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Scalable training of neural network
potentials for complex interfaces through
data augmentation
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Artificial neural network (ANN) potentials enable accurate atomistic simulations of complex materials
at unprecedented scales, but training them for potential energy surfaces (PES) of diverse chemical
environments remains computationally intensive, especially when the PES gradients are trained on
atomic forcedata.Here,wepresent anefficientmethodology incorporating forces intoANN trainingby
translating them to synthetic energy data using Gaussian process regression (GPR), leading to
accurate PES models with fewer additional first-principles calculations and a reduced computational
effort for training. We evaluated the method on hybrid density-functional theory data for ethylene
carbonate (EC) molecules and their interfaces with Li metal, which are relevant for Li-metal batteries.
The GPR-ANNpotentials achieved an accuracy comparable to fully force-trained ANNpotentials with
a significantly reduced computational and memory overhead, establishing the method as a powerful
and scalable framework for constructing high-fidelity ANN potentials for complex materials systems.

Interactions at materials interfaces are essential to technologically relevant
phenomena, such as crystal growth1,2, catalytic activity3, and interphase
formation4,5. A concrete example is lithium (Li) metal batteries, which are a
promising alternative to conventional Li-ion batteries due to their potential
for higher energy density and lower cost per kWh6–11. However, their
commercialization has been hindered by a lack of understanding regarding
the reaction between Li metal and liquid electrolytes12,13. An atomistic
understanding of interface structures and reaction dynamics would provide
an opportunity to control interfaces in devices such as Li-metal batteries.
Unfortunately, experimental characterization of interfaces in operando
remains challenging, and current simulation approaches either face prohi-
bitive computational costs or lack sufficient accuracy.

Interactions at interfaces typically involve different types of bonding,
e.g., metallic bonding within Limetal and covalent and ionic bonding in the
electrolyte, which are not well captured by conventional interatomic
potentials. Additionally, interface simulations typically require structure
modelswith several hundred to thousandsof atoms, i.e., systemsizes that are
challenging for accurate first-principles electronic structure methods.
Density-functional theory (DFT) has become a standard tool for materials
discovery and has proven accurate for predicting a wide range of materials
properties from first principles14,15. DFT expresses the electronic structure

problem in terms of the electron density, thereby avoiding the need for an
accurate approximation of the all-electron wavefunction. Semilocal DFT
based on the generalized-gradient approximation (GGA) or meta-GGA, is
comparatively computationally efficient and themostwidelyused electronic
structure method for materials simulations, and it is generally considered
reliable formetals andmain-group compounds. Still, additional corrections
are often required for transition-metal compounds16 and for molecular
systems with dispersive interactions17, which can lead to significant errors
for interfacial properties if the two materials in contact exhibit different
types of bonding. Computationally significantly more demanding DFT
hybrid functionals are often the only choice to reliably describe the elec-
tronic structure and potential energy in interface regions18.

Machine-learning (ML) potentials trained on first-principles and
quantum chemistry methods have emerged as a new family of reactive
interatomic force fields19–24. Early methods, including Gaussian Process
regression25 and feed-forward artificial neural networks (ANNs)26, laid the
groundwork for ML potentials, while recent innovations27–34 have achieved
improvements in terms of computational efficiency and accuracy on public
benchmarks, bringing ML potentials closer to replacing DFT in some
applications. Especially, ML potentials based on ANNs with atomic
descriptors35 havebeenapplied to awide rangeofmaterials andphenomena,
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including metals36–41, oxides41–44, alloys45,46, molecular systems47–50 and
amorphous phases51–54 due to their computational efficiency and easy
accessibility. Carefully trained ML potentials can represent the potential
energy surface (PES) of materials with thousands to millions of atoms with
an accuracy close to that of ab initio methods at a significantly reduced
computational cost and scaling. Accordingly, extensive research has been
devoted to constructingANNpotentials for interfaces, for instance, between
copper clusters and zinc oxide41, water and copper55, water and zinc oxide56,
and heterogeneous catalysts57,58.

Constructing reliable ML potentials for surfaces and interfaces is
especially challenging because abrupt changes in atomic environments and
different bonding types are involved. As a consequence, a huge amount of
reference data points can be needed to capture the drastically changing PES
with sufficient precision59. These challenges have limited the construction of
ANNs for interfaces, and atomistic understanding of interfacial reactions
remains limited despite their crucial impacts in various technology areas60–62.

Effective learning strategies are desirable to avoid anyunnecessaryfirst-
principles calculations with expensive hybrid functionals or higher-level
theory. In this regard, including atomic force information in the ANN
potential training was found to greatly reduce data requirements, improve
PES accuracy, and increase transferability35,43,63–67. Additionally, active
learning canbe employed,where trainingdata forMLpotential construction
is generated incrementally based on the current state of the potential, adding
new data to training sets in a systematic and non-redundant fashion68–73. A
typical active learning strategy is to perform additional first-principles cal-
culations for atomic structures for which the ML potential reports an
uncertainty that exceeds a user-defined threshold. Such an approach avoids
redundant first-principles calculations and increases the transferability of
ML potentials by adapting the model to a new structure domain.

However, training ANNs not only on function values (energies) but
also on derivatives (atomic forces, stress tensors, etc.) comes at a significant
computational and memory overhead because such direct force training
needs to evaluate and store the second (or higher order) derivative of the
ANNpotential, which scales quadratically with the number of atomswithin
the cutoff range74. This unfavorable scaling can be prohibitively expensive
for complex, dense systems, or at least calls for expensive specialized
hardware. Furthermore, conventional ANNs do not directly provide an
uncertainty estimate that could be used for active learning, so either the
predictions from multiple independently-trained ANN potentials need to
be combined (query by committee)38,75 or the ANN architecture needs to be
modified, for example, by introducing dropout layers76.

In this article, we introduce a new data-augmentation approach where
ANN training is seamlessly integrated with Gaussian process regression
(GPR), a non-parametric regressionmodel, to overcome these downsides of
ANN training. The GPR-ANN approach indirectly learns the information
from the PES gradients (i.e., the interatomic forces) by translating the gra-
dients to additional energy data via local interpolation and extrapolation
using separate GPRmodels, simultaneously fitting to data points and their
derivatives of subsystems of overall heterogeneous reference data (Fig. 1).
The general idea follows the same spirit as the first-order Taylor-expansion
extrapolation method that some of the present authors proposed
previously74 and simple extrapolation based on the zeroth order77. The non-
linear, Bayesian nature of GPR models leads to greatly improved perfor-
mance compared to the above methods, as we will show in the following
sections. GPR-basedML potentials have been used with great success, such
as theGaussian approximation potential (GAP) byBartók et al.25,78–80, which
performs exceptionally well with limited data compared to other ML
potential methods81,82. We will show how the GPR-ANN approach enables
scalable force data utilization without relying on direct force training by
combining the best of both worlds: leveraging the superior interpolation and
extrapolation capabilities of GPR with small data sets and uncertainty
estimation at negligible additional computational cost, while maintaining
the efficiency of ANN training for large data sets.

In the following Results section, we first detail the working principle of
the GPR-ANNmethod and then demonstrate its improved performance in
comparison with conventional ANN potentials by applying the method to
three benchmark cases with increasing complexity: (i) a Lennard-Jones (LJ)
potential of the H-H bond in the H2molecule, (ii) a hybrid-functional DFT
PES of two ethylene carbonate (EC) molecules, and (iii) an ECmolecule on
the surface of Li metal.

Results
Energy training
A popular ANN potential architecture is the high-dimensional PES pro-
posed by Behler and Parrinello26, which describes the total energy, E(σ), of a
structure, σ ¼ fð R!1; t1Þ; ð R

!
2; t2Þ; :::; ð R

!
N ; tN Þg where R

!
i are the coor-

dinates of atom i and ti is its chemical species, as a sum of atomic energy
contributions

EðσÞ � EANNðσ; fwgÞ ¼
X
i2σ

ANNti
σRc
i ; wti

n o� �
ð1Þ

Fig. 1 | Indirect force training with the GPR-ANN approach. (Step 1) The
reference data (black circles) consists of atomic structures (σ), their energies (E(σ))
and corresponding atomic forces (Fj(σ)) from electronic structure calculations for
structures sampling target potential energy surfaces (PES, thick gray lines). Each
subset contains related structures with the same number of atoms. (Step 2) For each
subset, Gaussian process regression (GPR) models can efficiently interpolate the
potential energy surface based on the energies and atomic forces (red lines). The

GPR models can then be used to generate synthetic data by labeling additional
related structures (empty circles) with energies. Structures for which theGPRmodel
reports a high uncertainty are evaluated with the reference electronic structure
method. (Step 3) Finally, the original structures and their energies can be combined
with the additional structures and their GPR energies (red triangles) into a unified
overall data set that can be used for efficient energy-only training of general ANN
potentials (yellow lines).
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where σRc
i in Eq. (1) is a descriptor (i.e., feature vector) representing the

atomic environment of atom iwithin a cutoff radiusRc that serves as input to
a multilayer perceptron feedforward neural network, ANNti

, specific to the
chemical species of atom i. Each neural network ANNti

is defined by its
weight parameters fwti

g, and we denote the set of all weight parameters for
all chemical species {w}.

A basic requirement of σRc
i is to obey the invariances of the total energy

with respect to translation/rotation of the entire structure and permutation
of equivalent atoms, and in this work, we used a Chebyshev descriptor
method83 that allows for an efficient representation of multi-element
compounds. Details of the ANN architecture and the parameters for the
Chebyshev descriptor are given in theMethods section.

Given reference data sets of structures σ and energies Eref(σ), energy-
only training minimizes the energy loss function

Lenergy ¼
X
σ

1
2

EANNðσ; fwgÞ � Eref ðσÞ� �2 ð2Þ

by optimizing the weight parameters {w}

fwoptg ¼ argmin
fwg

fLenergyg : ð3Þ

We refer to the process of minimizing the loss function Lenergy as energy
training. The minimization of Lenergy with respect to {w} requires the
derivative

∂Lenergy

∂w ¼ P
σ
ΔEðσÞ ∂EANNðσ;fwgÞ∂w

¼ P
σ
ΔEðσÞP

i2σ

∂ANNti
ðσRci ;fwti

gÞ
∂w

whereΔEðσÞ ¼ EANNðσ; fwgÞ � Eref ðσÞ

; ð4Þ

which can be efficiently calculated using backpropagation. The computa-
tional cost and memory requirement of energy training is, per data point,
independent of the size of the data set but instead scales asOðNwÞwhereNw

is the number of weight parameters. Therefore, for training data sets con-
taining a total ofNatom atoms, the total computational cost per epoch scales
linearly with data pointsOðNwNatomÞ, which makes this approach feasible
for large data sets up to millions of data points.

However, while energy training is computationally efficient, it does not
fully utilize the reference data, since it discounts the interatomic forces,
which provide valuable high-dimensional information about the PES gra-
dient andcanbeobtained frommanyelectronic structuremethodsusing the
Hellmann-Feynman theorem without significant computational
overhead84.Consequently, energy training requires largerdata sets to sample
the PES more finely to accurately reproduce its gradient and curvature,
leading to increased computational overhead for electronic structure
reference calculations.Moreover, training exclusively on energies can result
in large uncertainties and unreliable force reconstruction, as low energy
errors donot necessarily correlatewith accurate force predictions. This issue
is further exacerbated by the presence of noise in the energy data, which
amplifies force prediction errors as the model overfits to the noise, under-
mining the reliability of the reconstructed PES85.

Direct force training
The chemical complexity of interface systems might require electronic-
structure methods that are computationally demanding, such as hybrid
functionalDFT calculations, so that an excess of reference data for theANN
potential training must be avoided. Including atomic force information in
ANN potential training significantly reduces data requirements by causing
the training to enforce a physical constraint, the conservation of total energy
F
!

i¼�∇
!

iEðσÞ
85. Incorporating the physics into ANN training not only

enables ANN potentials to accurately reproduce the gradient of PES with

less training data but also helps prevent overfitting to noise in the energy
data, ensuring more reliable energy and force predictions.

ANN potentials can be trained simultaneously on energies Eref(σ) and

forces F
!ref

j ðσÞ, where j indexes the individual atoms within a structure σ, by

including the force error Lforce in the total loss function,

Ltotal ¼ ð1� αÞLenergy þ αLforce ð5Þ

Lforce ¼
X
σ

1
2
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; ð6Þ

whereα is a parameter determining the relative contributionof the force loss
Lforce to the overall loss function Ltotal. We refer to training that minimizes
the loss function Ltotal, fwoptg ¼ argminfLtotalg, as direct force training.

However, direct force training also has a critical drawback: overhead in
training cost and memory, since it requires evaluating the derivative Ltotal

with respect to {w}

∂Ltotal

∂w ¼ ð1� αÞ ∂Lenergy

∂w
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and calculating the term
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requires evaluating the second derivative of the neural networks.
The derivative within the double sum of Eq. (8) is zero when the local

atomic environments of atoms i and j do not overlap. As a consequence, the
total computational cost of direct force training scales with
OðNwNatomN localÞ where Nw is the number of weight parameters, Natom is
the total number of atoms in the training set, and Nlocal is the average
number of atoms within 2Rc, where Rc is the cutoff distance of the local
atomic environment. In other words, direct force training scales approxi-
mately quadratically with Nlocal, which, in turn, increases cubically with Rc,
so that the computational cost scales with the cutoff radius as OðR6

c Þ. This
unfavorable scaling makes direct force training expensive for condensed
phases and infeasible for large cutoff radii Rc, prompting us to develop a
more efficient training method.

Representing potential energy surfaces with Gaussian process
regression
Here, we propose using GPR models as surrogate models to efficiently
incorporate atomic forces in ANN potential training in an indirect fashion.
Unlike ANNs, which are sometimes referred to as parametric models since
they are defined by their architecture and weight parameters {w}, GPRs are
non-parametric kernel-based ML models, for which the model construction
depends solely on the reference data. For small data sets, full GPR simulta-
neously fitted to function values and derivatives is themethod of choice with
respect to accuracy, remarkably reproducing target PESs, and it provides an
uncertainty estimate without additional computational overhead, making it
possible to further reduce data requirements with active learning25,78–80.

The downside is that the computational cost and memory require-
ments for constructing a full dense GPRmodel scale asOðN3Þ andOðN2Þ,
respectively, with the training set size N86. In addition, the cost of inference
or prediction for newdata points also increases with the size of the reference
training data set80. The unfavorable scaling can be improved with sparse
GPR techniques, but the fundamental dependence on the data size remains.
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Indirect force training (GPR-ANN)
The intrinsic pros and cons of parametric ANN and non-parametric GPR
prompted us to consider a way to integrate the advantages of both
approaches. For interface systems, the overall heterogeneous reference data
is naturally comprised of data for subsystems, e.g., bulk structures of the
involved materials, cluster structures with different numbers of atoms and
compositions, and periodic surface slabmodels (black boxes in Fig. 1). Each
of these homogeneous subsystems can be individually fitted using separate
local GPR models (red lines in Fig. 1), enabling more accurate and specia-
lized representations of their respective PESs. Using the local GPR models,
the overall PES can be finely sampled by perturbing the atomic structures in
the subsystem data sets and augmenting synthetic data outside the observed
regions with GPR-predicted structure-energy data. Limiting each GPR
model to subsets of the total reference data mitigates scalability issues with
large data sets, simplifies the fit, and facilitates highly efficient inference.

This process also makes it easy to perform active learning iterations:
The GPR uncertainty of each additionally sampled structure (σ 0 in Fig. 1) is
evaluated, andwhen it exceeds a user-defined threshold, the structure can be
re-evaluated using the reference electronic-structure method and incorpo-
rated into the reference data set. This was not necessary in the benchmark

examples of this study, as the GPR uncertainty remained low for pertur-
bations applied to the relatively homogeneous subsets of data considered in
the present study. In applications where larger perturbations are used to
actively explore the structural domain or where subsets of data are sparsely
distributed, theGPRuncertaintymeasurewould enable refining the training
data quality via Bayesian learning, motivating additional first-principles
calculations during the GPR augmentation preprocessing stage (steps 1 and
2 in Fig. 1). Finally, ANN potentials (orange line in Fig. 1) are trained on
GPR-augmented energies (red triangles) as well as the original electronic-
structure reference energies (black circles) within the efficient energy-only
training scheme described above. Since the synthetic data points generated
with the local GPRmodels are based on the energies and atomic forces, the
resulting ANN potentials are also implicitly trained on force information.
We refer to this approach as indirect force training.

Aswill be shown in theResults section, amultiple ofM between 10 and
40 in synthetic data points relative to the original data is sufficient to obtain
optimal sampling of the GPR-ANN potentials, which leads to a total
computational cost that is significantly lower than that of direct force
training, especially for interface systems consisting of a large number
of atoms.

Fig. 2 | Comparison of the different ANN potential training strategies for an H2

molecule. The same seven reference data points (black circles) sampled from the
target potential energy surface of a H2 dimer (dashed black line) were used to assess
the accuracy and robustness of ANN potentials obtained by training with the four
strategies detailed in the main text: a, energy-only training, indirect force training
with b, the Taylor-expansion method and, c, the GPR-ANN method, and d, direct
force training. The insets show zoomed-in views of the regions marked with rec-
tangles. The mean predicted energies (top) and forces (bottom) of 10 ANN poten-
tials are shown as solid lines, and the shaded regions indicate the 99% confidence
interval (CI) as a measure of uncertainty. For the data-augmentation approaches,

Taylor-ANN and GPR-ANN, the seven reference energies were supplemented with
14 predicted energies (green squares in b and red triangles in c), and the corre-
sponding H2 structures were generated with atomic displacements of δ = ±0.008 Å
and δ = ±0.055 Å, respectively. The Taylor-ANN and GPR-ANN potentials corre-
sponding to the optimal atomic displacements are shown, and results from other δ
variables can be found in Figs. S4–7. The accuracy and robustness of the training
strategies are quantified by the e, mean absolute error (MAE) and, f, mean standard
deviation (MSD) of the energy and the g, MAE and h, MSD of the force, respectively.
For the data-augmentation methods, these measures depend on the displacement
length and are shown as a function of δ.
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In the following, we compare the training performance of the GPR-
ANN approach in terms of accuracy, robustness, and computational effi-
ciency against energy-only training, direct force training, and training using
a first-order data augmentation method74 here referred to as Taylor-ANN.

H2 molecule
As a first example, we consider a Lennard-Jones (LJ) potential roughly
approximating the H-H dimer for the purpose of an intuitive PES visuali-
zation. In Fig. 2, the target PES in the bond length range from 0.95 to 2.05Å
is displayed as a dashed black line, and seven reference samples are marked
by black circles. The accuracy and robustness of the different ANN training
methods are examined in terms of the mean and standard deviation (SD)
over a committee of 10 ANN potentials, differing by random seed, to
visualize how accurately the mean reproduces the target PES and how
robust the training result is based on the SD between the 10 ANNs. Results
for the predicted energies and forces are shown in Fig. 2a–d for each of the
four ANN trainingmethods with themean and the 99% confidence interval
(CI) represented by solid lines and shaded regions, respectively.

In the case of the data-augmentation approaches, Taylor-ANN and
GPR-ANN, the seven reference forces were translated into additional
energies for 14 synthetic structure-energy data points, and the combined
total of 7+ 14 = 21 energy data points were used as training data. The
additional structures were generated by displacing the atoms in the seven
original reference structures by small displacements δ, and the energies
approximated by linear Taylor expansion and a GPR model are shown in
the figure as well.

Note that the performance of the Taylor-ANN and GPR-ANN
potentials depends on the choice of the displacement length δ, and the
results shown in Fig. 2b, c are from the potentials with the optimal dis-
placements δ. Figure S1 shows the approximate energies in comparison to
the reference LJ PES for different displacements δ ranging from± 0.003 to ±
0.055 Å. The mean absolute errors (MAE) relative to the LJ reference
energies are also summarized in Fig. S1d as a function of the displacement
length. As the displacement length increases, the Taylor-ANN energies
deviate farther from the reference due to the limitations of the first-order
approximation, while the GPR-ANN energies agree closely with the LJ PES
throughout the displacements considered. The ANN potentials trained on
augmented energy data highly depend on the perturbation size and cor-
rectness of corresponding energies that the potentials were trained on, and
Figs. S2–7 summarize the mean, SD, and error of the mean with respect to
the target LJ PES. The best Taylor-ANNpotentials were obtainedwith δ=±
0.008 Å and the best GPR-ANN potentials were obtained with the largest
δ = ± 0.055 Å.

All of the four trainingmethods exactly reproduce the energies given as
training data with negligible uncertainty. However, the error of the mean
over 10 ANN potentials obtained from energy-only training increases in
between training structures (Fig. 2a). The errors come from an incorrect
reproduction of the PES gradient, even at the reference points, as is evident
from the force errors shown in the bottom panels of the figures. In addition,
for the smooth PES region at long H-H separations, the SD is not negligible
despite themean of the 10ANNpotentials aligningwell with the target PES,
showing the interpolation instability of energy-only training with
insufficient data.

Indirect force training with the Taylor-ANN approach (Fig. 2b) or
direct force training (Fig. 2d) corrects the slope of the ANN potentials near
the reference samples, leading to great improvements in interpolation as
shown in a significant reduction in the error and SD for structures not
included in the training data but located nearby. However, the SD still
remains non-negligible, particularly for structures in between the training
data as shown in the insets. Additionally, the mean demonstrates a sig-
nificant underestimation of absolute forces in the repulsive regionwhere the
H-H distance is below 1 Å, highlighting the intrinsic extrapolation limita-
tions of ANN training beyond the scope of local training data, small δ of ±
0.008Å in theTaylor-ANNmethod, and local forces in direct force training.
This issue persists even with the use of large perturbations in the Taylor-

ANN approach, as the model learns from inaccurate additional energy
values (Figs. S4g, S6g).

On the other hand, the GPR-ANN potentials trained on accurate
augmented energies for the diverse structures generatedwith large δ achieve
the most accurate reproduction of the PES and its derivatives, maintaining
negligible SD both within and beyond the training data range as shown in
Fig. 2c.

The four trainingmethods are further compared in termsof theirmean
absolute error (MAE) andmean SD (MSD) over 200 test points in Fig. 2e–h.
The results are shown as a function of the displacement length for the
Taylor-ANN and GPR-ANN approaches. Taylor-ANNs (green squares)
show the best accuracy for a small displacement of δ = 0.008 Å, but their
uncertainty is the lowest at a much larger displacement of δ = 0.034 Å.
Additional structures generated by small displacements are very similar to
the reference structures, and thus, there are still large PES regions that are
notwell sampled. In general, if the synthetic datapoints are too similar to the
original data, i.e., if the displacements δ are chosen too small, the data-
augmentation methods Taylor-ANN and GPR-ANN do not show any
notable improvement in robustness compared to energy-only training, as
seen in Fig. 2f, h. As the displacement increases, the additional structures are
more distinct from the original reference structures, and these well-
distributed training points greatly reduce the SD between ANN potentials.
At the same time, however, Taylor-ANN potential energies become less
accurate as the displacement increases (Fig. S1), and including the inaccu-
rate synthetic data in the training data degrades theANNpotential accuracy
despite decreasing the uncertainty in the predicted energies and forces.
Thus, the Taylor-ANN augmentation method suffers from a trade-off
between data diversity and accuracy that needs to be accounted for when it
is used.

In contrast, we can see that the GPR-ANN augmentation method is
able to provide accurate energy labels for highly displaced unique structures.
As a result, ANN potentials trained on the GPR-augmented energy data set
show a gradual improvement in accuracy and uncertainty with increasing
displacement length. The GPR-ANNs with the largest displacement of
δ = 0.055Å, which results in themost uniform sampling of the PES regions,
almost perfectly represent the LJ PES, exhibiting excellent accuracy and
robustness in both interpolation and extrapolation regions. TheMAEs of the
GPR-ANNpotentials for energies and forces are 3meVand0.21 eV/Å, lower
than the MAE achieved by energy-only training (105 meV, 3.10 eV/Å) and
direct force training (23meV, 1.22 eV/Å). In addition, theMSDs of theGPR-
ANN potentials for energies and forces are 2 meV and 0.08 eV/Å, i.e., also
lower than the MSD for energy-only (22 meV, 0.52 eV/Å) and direct force
training (9 meV, 0.30 eV/Å).

Given identical reference energy and force data, the GPR-ANN data-
augmentation strategy makes optimal use of the available information and
leads to themost accurate and robust (least uncertain) potentials among the
four considered ANN training methods. In practice, this means the GPR-
ANN method requires the least number of reference electronic-structure
calculations to reach a desirable level of accuracy and uncertainty.

While the dihydrogen molecule is a test system that is easy to con-
ceptualize, it does not reflect the complexity of real-world applications.
Therefore, we next compare the ANN training approaches for a higher-
dimensional system comprised of two ethylene carbonate (EC) molecules.

Ethylene carbonate molecule dimers
To assess the GPR-ANN data-augmentation method for a relevant appli-
cation, we first turned to the electrolyte side of the electrolyte-electrode
interface that we seek to model. The energies and atomic forces of 1000
ethylene carbonate (EC) dimer structures were evaluated with hybrid-
functional DFT calculations, and the resulting data set was divided into 250
training and 750 test data points. See theMethods section for details of the
DFT calculations and structure generation.

As for the H2 example before, we compared the accuracy and
robustness of the four different ANN training methods by evaluating the
MAE and MSD for the energy and force predictions for the 750 test
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structures using a committee of 10 ANN potentials. Figure 3a–c shows the
MAE and MSD of the energy, absolute force, and force direction, respec-
tively, as a function of the displacement amplitude δ.

Each EC, (CH2O)2CO, consists of 10 atoms, so for two molecules the
total number of force components is 60 for each EC dimer structure. With
direct force training, the percentage of force components to consider during
training is a user parameter, and prior research suggests that ~10% of the
force components can already be sufficient and provide an optimal balance
of computational efficiency and training outcome87. Therefore, Fig. 3a–c
shows the performance metrics of direct force training with 10 and 100%
force information, respectively.

As in theH2 example, the indirect force training with the Taylor-ANN
approach achieves the lowestMAE for δ = 0.003Å, which is again a smaller
displacement than the one that minimizes the MSD (δ = 0.013 Å). Atomic
forces predicted by the Taylor-ANN potentials are comparable to those
predicted by GPR-ANN potentials for δ < 0.01 Å, but the performance of
the GPR-ANN potentials remains robust even for larger displacements due
to an increase in data diversity with more accurate energy augmentation
achieved through GPR models. In all considered metrics, accuracy and

robustness for energies and forces, the GPR-ANN potentials with
δ > 0.003 Å are better than ANN potentials from direct force training with
10% of the force information. With an optimal δ of 0.021 Å, GPR-ANN
potentials are comparable to direct force training with 100% forces, exhi-
biting MAE and MSD values that improve over energy-only training by
about one order of magnitude.

Note that the data shown in Fig. 3a–c is for Taylor-ANN and GPR-
ANN potentials with a multiple ofM = 64. We used an unnecessarily large
multiple for this comparison to ensure this parameter does not bias the
results. As seen in supplementary Fig. S8, GPR-ANN potentials improve
with increasing multiple and converge quickly, outperforming direct force
trainingwith 10%of the force data already at amultiple ofM=16 and forM
> 36 becoming comparable to direct force training with 100% forces.

Figure 4a–d shows a more detailed analysis of the atomic forces pre-
dicted by ANN potentials trained with the different strategies. The figure
shows the correlation of the predicted absolute force magnitude with the
DFT reference forces. ANNpotentials trained on the energy only (Original-
ANN in Fig. 4a), clearly do not provide accurate force predictions without
expanding theECdimer database. For a large fractionof the atoms, the force

Fig. 3 | Comparison of the accuracy and robust-
ness of the four ANN training methods for ethy-
lene carbonate dimer structures. The mean
absolute error (MAE) and mean standard deviation
(MSD) over a committee of 10 ANN potentials are
shown for a the energy, b the absolute magnitude of
the forces, and c the force direction. These metrics
are shown for ANN potentials obtained from
energy-only training (dashed purple line), indirect
force training with the Taylor-ANN (green squares),
and theGPR-ANN (orange triangles) approach, and
direct force training with 10% forces (dashed light
blue line) and 100% force information (dashed dark
blue line).

Fig. 4 | Detailed analysis of the atomic forces in
ethylene carbonate dimers predicted with the
different training approaches. a–d Correlation of
the magnitude of the forces predicted by ANN
potentials with theDFT reference. e–hError in force
direction with respect to DFT reference. The pre-
dictions were made by a committee of 10 potentials
obtained from energy-only training (a, e), implicit
force training with the Taylor-ANN (b, f) and GPR-
ANN (c, g) methods, and direct force training (d, h).
The color indicates the frequency of occurrence
using a logarithmic scale. The solid black line in the
top panels a–d corresponds to perfect correlation
with the DFT reference, and the dashed black lines
indicate differences of 1 eV/Å. Optimal parameters
were used for all force training methods: Taylor-
ANN (δ = 0.003 Å, multiple = 64), GPR-ANN
(δ = 0.021 Å, multiple = 64), and direct force train-
ing (100% forces, alpha = 0.3).

https://doi.org/10.1038/s41524-025-01651-0 Article

npj Computational Materials |          (2025) 11:156 6

www.nature.com/npjcompumats


error is greater than 1 eV/Å, which is the range indicated with thin dashed
lines in the figure. The three other training approaches greatly improve the
absolute force distribution, and the figure shows results for optimal para-
meters: Taylor-ANN potentials (δ = 0.003 Å, multiple = 64), GPR-ANN
potentials (δ = 0.021 Å, multiple = 64), and direct force training (100%
forces, α = 0.3). Potentials trained with the GPR-ANN approach and direct
force training show similar performance in force prediction, such that the
absolute forces of most of the atoms are predicted to be close to the DFT
reference, i.e., close to the x = y diagonal of the plots.

Figure 4e–h shows the corresponding distribution of ANN prediction
errors in the direction of the atomic force vectors as a function of the
absolute value of the DFT force. Again, the failure of the ANN potentials
trained on only 250 energies is obvious: the forces acting on a significant
fractionof the atoms are predicted inopposite direction (180°) relative to the
reference. The errors in atomic force direction are significantly reduced
when force information is included, especially with the GPR-ANN
approach or direct force training. For these two approaches, errors in
force direction larger than30° only occur in a small fractionof the atomsand
for force vectors with small magnitudes, below 0.5 eV/Å.

While the performance of the GPR-ANN approach looks promising
for the ECmolecule example, interface systems are yet more challenging to
model. Therefore, as a final test, we will compare the different training
methods for EC adsorbed on and interacting with the surface of Li metal.

EC on the surface of lithium metal
We generated 800 reference structures of an EC molecule on the Li(100)
surface, 46 atoms in total, by applying randomdisplacements to all atoms in
the ground-state configuration.All structureswere labeledwith energies and
atomic forces fromhybrid-functional DFT calculations, the details of which
are provided in theMethods section. The data set was split into 200 training
and 600 test data points (seeMethods section).

As for the previous systems, committees of 10 ANN potentials were
used to predict the energy and force of the 600 test structures, and theMAE
andMSD are summarized in Fig. 5. Overall, the trends are similar as for the
EC dimer structures from the previous section, yet more pronounced:
Implicit force training with the Taylor-ANN approach achieves the lowest
MAE and MSD for a δ of 0.008 Å, and the accuracy and robustness of the
method for energies and the magnitude of the forces lie between those of
direct force training with 10% and 100% force information and is com-
parable to direct force training with 10% for the force direction. However,

the errors and variance rapidly increase with increasing δ as the first-order
Taylor expansion becomes unreliable. In practice, it can be expected to be
challenging to find an optimal δ that both yields data diversity and provides
sufficient accuracy, since the perturbation parameter depends on the
unknown PES.

In contrast, theGPR-ANNdata-augmentationapproach ismuchmore
robust with respect to the choice of the displacement amplitude. As seen in
Fig. 5, all GPR-ANN potentials with δ > 0.013 Å show accuracy and
robustness comparable to direct force trainingwith 100% force information
across all of the metrics.

The MAE and MSD as a function of the augmentation multiple is
plotted in Fig. S9 for fixed optimal δ values of 0.008Å for the Taylor-ANN
and 0.034 Å for the GPR-ANN approach, respectively. The GPR-ANN
approach with amultiple of 16 already reaches the accuracy and robustness
of direct force training with 100% forces for this complex Li-EC system.

Figure 6 shows a detailed analysis of the atomic forces with correlation
plots and the directional errors, in the same fashion as above in Fig. 4 for the
EC dimer case. The trends are similar to those seen for the EC dimers, and
energy-only training on 200 energy data points proves certainly unreliable
regarding the predictions for both magnitude and direction of forces
showing severe errors for a large fraction of atoms. The best agreement with
the DFT reference was achieved by the GPR-ANN potentials and direct
force training, consistent with the average analysis of Fig. 5. For this more
challenging system, direct force training shows significantly more outliers
with errors greater than 1 eV/Å (highlighted in red circles and ellipses in
Fig. 6) than training with the GPR-ANN approach, implying that direct
force training is more vulnerable to critically large errors despite the com-
parable MAE and MSD of the two methods.

Computational efficiency of the GPR-ANNmethod
As discussed above, the computational cost of direct force training scales
withOðNwNatomN localÞ and that of synthetic data GPR-ANN training with
OðNwNatomMÞ. As the examples of the previous sections demonstrated, a
fixed multiple of M = 10–40 additional structures generated via random
atomic displacement is sufficient to obtain GPR-ANN potentials compar-
able to direct force training with 100% force information with regard to the
accuracy and robustness for all considered metrics. For condensed phases
and typical cutoff radii, the number of atoms within twice the local atomic
environment, Nlocal, is at least one order of magnitude greater thanM and
can be even larger for materials with high density. For example, for water

Fig. 5 | Comparison of the accuracy and robust-
ness of the four ANN training methods for an
ethylene carbonate molecule adsorbed on the
lithium metal (100) surface. The mean absolute
error (MAE) and mean standard deviation (MSD)
based on a committee of 10 ANN potentials are
shown for the a, energy, b, absolute forcemagnitude,
and c force direction. Results are shown for energy-
only training (dashed purple lines), indirect force
training with the Taylor-ANN (green squares) and
GPR-ANN (orange triangles) data-augmentation
methods, and direct force training with 10% (dashed
light blue lines) and 100% (dashed dark blue lines)
force information.
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and copper, a recent review reported that typical local atomic environments
contain between 50 and 150 atoms within cutoff range Rc

88, so that 400 to
1200 atoms are within the range 2Rc required for force evaluation. On the
other hand, the fitting of the GPRmodels also requires computation, which
gives rise to a pre-factor. Therefore, in the following, we benchmark the
efficiency of the indirect force training approach by comparing thememory
and computer time required by GPR-ANN training and direct force
training.

For this benchmark,we used the entire reference data set of 5168 Li-EC
DFT interface calculations comprised of 17 heterogeneous subsets. This
includes the above example of a single ECmolecule adsorbed on the Li(100)
surface (subset 17), and the other subsets consist of different numbers of
atoms and compositions generated with different protocols to sample
diverse structural configurations of the interface (see the “Methods” section
for details). Each of the subsets was divided into training and test data, with
2100 and 3068 training and test points, respectively (see the “Methods”
section for details).

Figure 7a–d compares the efficiency of direct force training and GPR-
ANN training in terms ofmemory usage and training time per epoch across
various choices of batch sizes and cutoff radii (Rc) for the atomic environ-
ment descriptors (σRc

i in Eq. (1)). The ANN potentials were trained on a
single CPU of our local computer cluster (Intel Xeon Gold 6226 2.9 GHz).
Both methods were trained using the optimal parameters identified in the
previous Li-EC example, i.e., δ = 0.034 Å and M = 36 for the GPR-ANN
approach and 100% forces and α = 0.3 for direct force training.

TheGPR-ANN approach benefits from the inherent parallelism of the
localGPRmodels,which canbefitted separately for eachdata subset (Fig. 1).
Furthermore, fitting GPR models on small homogeneous data sets con-
taining 50–150 structures and generating additional structures within the
local structural spaces contributes negligibly to the overall computational
cost, especially in terms of memory use, since it only needs to be done once
before the first ANN training epoch. For example, for the combined Li/EC
interface data system, the total time of GPR preprocessing including the
construction of the 17 GPR models and data augmentation took around
5–20min, compared to the total ANN training time of 5–10 h for 5000
epochs. Therefore, for relevant cutoff radii and batch sizes, the GPR-ANN
training consistently requires less memory than direct force training
(Fig. 7a, b), and the computer time is lower or comparable (Fig. 7c, d). In
addition,memoryusage and training timewith theGPR-ANNapproachare
essentially independent of the cutoff radius, whereas the computational cost
of direct force training grows asOðR6

c Þwith the cutoff radius for condensed

phases. Despite its lower memory usage compared to direct force training,
the GPR-ANN method achieves comparable accuracy in both energy and
force predictions, with over an order of magnitude improvement in energy
and nearly two orders of magnitude in force predictions compared to
energy-only training, as demonstrated in Figs. S10, S11.

Fig. 7 | Comparison of the memory and computer time required by GPR-ANN
and direct force training for Li-EC interface structures.Maximum random-access
memory (RAM) required for direct force training (blue circles) and GPR-ANN
training (orange circles) as a function of a the radial cutoff radius andb the batch size.
The training times per epoch for both training methods are shown as a function of
c the radial cutoff radius and d the batch size.

Fig. 6 | Detailed analysis of the atomic forces in
ethylene carbonate adsorbed on the lithium (100)
surface predicted by different ANN potentials.
a–d Correlation between the predicted absolute
force and the DFT reference. e–h Error in the force
direction with respect to DFT reference. The pre-
dictions are based on a committee of 10 ANN
potentials obtained from energy-only training (a, e),
indirect force training with the Taylor-ANN (b, f)
and GPR-ANN (c, g) methods, and direct force
training with 100% force information (d, h). The
color encodes the frequency of occurrence with a
logarithmic scale. The solid black line in the top
panels a–d corresponds to a perfect agreement with
the DFT reference, and the dashed black lines indi-
cate a difference of 1 eV/Å, and the red circles and
ellipses highlight outliers with force errors exceeding
1 eV/Å and critical force direction errors in high-
magnitude forces. For all force training methods,
optimal parameters were used: Taylor-ANN
(δ = 0.008 Å, multiple = 36), GPR-ANN
(δ = 0.034 Å, multiple = 36), and direct force train-
ing (100% forces, alpha = 0.3).
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Discussion
Data augmentation has previously been proposed as an approach for
implicit force training, and we compared the GPR-ANN method with the
Taylor-ANNmethod by Cooper et al.74 that is based on a first-order Taylor
expansion. As seen in the benchmark results, the GPR-ANN approach is
significantly more robust with respect to the choice of the additional
structures that are labeled with synthetic energies. Specifically, when addi-
tional structures are derived from reference structures via the random dis-
placement of atoms, the Taylor-ANN approach works best for small
displacement amplitudes where the potential energy varies approximately
linearlywith respect to the reference energy. In contrast, the non-linearGPR
models are also able tofit the PES in regions further away from the reference
structures. This is important since the optimal displacement amplitude for
the Taylor-ANN method depends on the curvature of the PES and is,
therefore, system-dependent. For example, the optimal displacement
amplitude for theECdimers and the adsorbedECmoleculewas 0.003Å and
0.008 Å, respectively. Soft bonds (e.g., Li-Li bonds in Li metal) can tolerate
greater displacements than stiff bonds (e.g., C-C bonds in EC molecules),
and in complex systems such as interfaces, it can become challenging to
select displacement amplitudes in practice. The GPR-ANN approach
mostly avoids this parameter dependence andworkswell in our test systems
for a wide range of displacement amplitudes.

GPR models excel at reproducing unknown PESs based on small
reference datasets. Additionally, GPR models provide an intrinsic measure
of model uncertainty that can be used to confirm whether the predicted
energy is robust, ensuring the diversity and reliability of augmented energy
data. Hence, the GPR-ANN approach can provide benefits not only for
efficiently sampling reference training data but also for preventing the
inclusion of inaccurate synthetic energy data (Fig. 1) as compared to
methods such as Taylor-ANN.

While the primary purpose of the GPR-ANNmethod is indirect force
training, its model uncertainty also enables efficient active learning, redu-
cing overall data requirements. Estimating uncertainties with ANNs alone
requires computationally expensive committees of multiple ANNs, and
thus, the computational effort of training uncertaintymodels is amultiple of
the effort of direct force training. In contrast, in the GPR-ANN training
process, GPR surrogate models provide uncertainty estimates at no addi-
tional cost, allowing for non-redundant reference data sampling with
Bayesian learning strategies prior to training multiple ANNs. Note that the
DFT reference data for the present work were obtained using traditional
sampling methods, i.e., molecular dynamics simulations, random atomic
displacements, and conformal sampling (Figs. S12, S14, S16). In particular,
for the heterogeneous EC/Li interface data sets, the structures in each subset
were independently generated by perturbation of an initial structure via
sampling so that only the atomic coordinates changed, maintaining com-
positional homogeneity. As a result, these data sets were inherently parti-
tioned into homogeneous subsets. In cases where training begins with an
existing database that requires division into homogeneous subsets, struc-
tures canbe groupedbased on their composition, number of atoms, and (for
example) the fingerprint-based similarity of their chemical
environments89,90.

Finally, we conclude that indirect force training is not always the best
option. For low-density materials or molecular data sets, the memory
requirements for direct force training can bemoderate so that the additional
pre-factor of ~40 due to additional synthetic data is less favorable than the
cost of direct force training. Hence, it depends on the target system and the
potential cutoff whether the GPR-ANN approach is effective, and its utility
is greatest for condensed-matter systems.

In conclusion, we have introduced a GPR-based data-augmentation
approach that indirectly incorporates atomic forces into the training of
ANN potentials via synthetic energy data. The approach bypasses directly
training ANN potentials on interatomic forces, which is computationally
demanding and can become infeasible due to the OðR6

c Þ scaling with the
range of the potentialRc. For four test systemswith increasing complexity—
the dihydrogenmolecule, ethylene carbonate dimers, an ethylene carbonate

molecule adsorbed on the surface of lithiummetal, and heterogeneous data
for diverse Li-EC interfaces—we showed that the GPR-ANN approach
yields ANN potentials with accuracy and robustness on a par with direct
force training across various metrics. We showed that scaling challenges of
the GPR models can be avoided using separate local GPR models, each
trained on small subsets of the overall data. For training on hybrid-
functional DFT data of the Li-EC interface system, indirect force training
with theGPR-ANNapproach significantly lowers thememory requirement
compared to traditional direct force training without compromising the
training time, ANN potential accuracy, robustness, or transferability. The
GPR-ANN approach, furthermore, provides an estimate of a model
uncertainty without a need for ensemble models that can be used for
Bayesian active learning strategies. As system complexity grows, the GPR-
ANN method provides a scalable alternative to traditional direct force
training in developing accurate potentials and reduces the need for costly
additional reference calculations. This paves the way for constructing ANN
potentials for complex condensed matter systems, such as the interfaces in
lithium-ion and lithium-metal batteries.

Methods
In addition to the description below, details of the reference data, the
GPR models, and the ANN potentials are summarized in supplementary
Tables S1-S3.

Reference data
A Lennard–Jones potential, as implemented in the atomic simulation
environment (ASE)91 library, was used to generate an approximate PES for
the H2 molecule. The energy and force for 7 equally-spaced H-H bond
lengthsbetween1and2Åwere generated as training referencedata, and200
equally-spaced points between 0.95 and 2.05 Å were generated for testing.

The 1000 EC dimer reference structures were generated by random
displacement of the ground-state structure. The energies and interatomic
forceswere evaluatedwith hybrid-functionalDFT calculations using the all-
electron electronic structure program FHI-aims in which the Kohn-Sham
states are expanded as linear combinations of numerical atomic orbitals92,93.
The HSE06 functional94,95 and FHI-aims’ default tight basis set were
employed for the non-periodic ECdimer structures. Relativistic effects were
taken into account on the level of the zeroth Order Regular Approximation
(ZORA)96.

The 1000 reference data points were divided into 250 training and 750
test data points, and their relative energy distribution with respect to the
minimum ground-state energy is shown in Fig. S12. Additional structures
for implicit force training with the Taylor-ANN and GPR-ANN methods
were generated by randomly displacing all the constituent atoms of the 250
training structures. Random displacements were obtained from a Gaussian
distribution, and the amount of displacement was controlled via the stan-
dard deviation parameter δ. Figure S13a shows the relative energy dis-
tribution of Taylor-augmented (green bar) and GPR-augmented (red bar)
energies of the same additional structures with different δ parameters ran-
ging from0.003Å to 0.044Å. For theGPR-ANNapproach, fullGPRmodels
were constructed using all the energy and force information of the 250
training structures to predict the energies of the additional structures.

The representation plot shows the predicted energies of 1000 addi-
tional (synthetic) structures as an example, which is 4 times the number of
the reference training structures, i.e., the augmentation multiple is M = 4.
For δ ≥ 0.013Å, someof the energiespredictedwith linearTaylor expansion
are lower than the ground-state energy, i.e., have values below zero. This
shows the limitation of the linear Taylor-ANNmethod since the energy of
no structure can be lower than the ground-state energy.

Figure S13b shows the distribution of energy difference between the
Taylor- andGPR-augmented energies.When δ is small, theTaylor andGPR
energies are almost identical, as expected. However, as δ increases, the
Taylor-expansion energies become increasingly lower than the GPR-
augmented energies. This is the case when the curvature of relevant PES is
positive, as schematically described in Fig. S13c.
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The800 reference structures ofECmolecules onLimetalwere sampled
by random displacement of the ground-state structure, and they were
evaluated using HSE06 DFT calculations using FHI-aims. All details of the
calculation were the same as in the previous section, except that the Li-EC
structures were represented as periodic slab models, and the DFT calcula-
tions were performedwith 5 × 5 × 1 k-pointmeshes. It should be noted that
atomic forces obtained fromDFTcalculations are very sensitivewith respect
to the density of the k-point meshes, and 5 × 5 × 1 meshes gave converged
results in our tests. Figure S14 shows the relative energy distribution of the
reference structures, which were divided into 200 training and 600 test data
points.

Additional structures for the data-augmentation approaches were
generated by random displacements, as described above for EC dimers,
using the same standard deviation parameter δ as in the previous section.
Figure S15a shows the relative distribution of Taylor-augmented (green bar)
and GPR-augmented (red bar) energies of the same synthetic structures
corresponding to different δ values ranging from 0.003Å to 0.044Å. As for
the ECdimer, thefirst-order Taylor expansion underestimates the energy of
perturbed structures for large δ values compared to the GPR energies (Fig.
S15b). However, there are some structures 0.008Å ≤ δ ≤ 0.034Åwhere the
Taylor-expansion energies are higher than the GPR energies, implying that
thePESof theLi-ECsystem ismore complex than that of theECdimers, and
reference samples around regions with negative curvature are included
as well.

All data was combined into a heterogeneous dataset for diverse Li-EC
interface structures. For each initial structure in subsets with a different
number of EC molecules and Li atoms, ab initio molecular dynamics
(AIMD) simulations, molecular dynamics simulations using preliminary
ANN potentials, random displacement, and internal (i.e., conformer)
sampling were performed to generate subset data. All the generated struc-
tures were evaluated with HSE06 DFT calculations using FHI-aims with
5 × 5 × 1 k-point meshes for periodic cells and a single Γ k-point for non-
periodic cells. For each data subset, a representative atomic structure is
shown in Fig. S16 alongwith each of the samplingmethods and the number
of training and test data points.

GPR surrogate model
All GPR construction and GPR-based data augmentation were performed
using theænet-GPRpackagedeveloped for thepresentwork andavailable at
https://github.com/atomisticnet/aenet-gpr. In all examples presented here,
full GPR models were utilized, accounting for the covariance between two
function values, between a function value and a derivative, and between two
derivatives80,85,86 with the squared exponential as the kernel function.
System-specific parameters are detailed below.

A GPR model for H2 molecule was constructed based on the energies
and forces of seven equally-spaced training points. We used flattened
Cartesian coordinates as the global fingerprint. Using PyTorch’s autograd
functionality, the weight and scale parameters of the kernel function were
optimized by iterativelyminimizing the energy loss function for the 200 test
points. After 100 iterations, the default parameters of the weight and scale
converged to 8.5 and 0.2, respectively (Fig. S17). Figure 17a, b shows the
GPR energy and force predictions with the default kernel parameters while
Fig. S17c, d shows the predictions after the parameter optimization. This
GPR model with optimized hyperparameters was used to augment energy
data for the GPR-ANN training.

For theECmolecule dimers, as for theH2molecule,flattenedCartesian
coordinateswereusedas structuralfingerprints.Weperformedagrid search
to optimize the GPR kernel parameters for this high-dimensional system,
and the optimized parameters, whichminimize the energy loss function for
the 750 test data points, are 1.0 and 1.5 for theweight and scale, respectively.
Figure S18a, b shows the correlation between the GPR-predicted absolute
force and the DFT reference before and after the kernel parameter opti-
mization. The GPR model fitted to the energy and forces of 250 reference
training data points with the optimized kernel parameters was used to
evaluate GPR-augmented energies.

As fingerprint for theGPRconstruction for the EC/Li interface system,
we tested both flattened Cartesian coordinates and smooth overlap of
atomic positions (SOAP) descriptors97 as implemented in the DScribe
library98. A SOAP descriptor was generated with a cutoff radius of 5.0 Å, 6
radial basis functions, and a maximum degree of spherical harmonics of 4.
As summarized in Fig. S19, the GPR model based on the SOAP descriptor
(kernel parameters: weight = 5.0, scale = 6.0) optimized by the grid search
shows an optimal correlation with the DFT reference, and this model was
adopted as a surrogate model to augment energy data.

For the heterogeneous interface data set, the descriptor and kernel
parameters of the GPRmodel were not further optimized, and we used the
parameters identified as optimal in the previous section. Using the same
kernel parameters, 17 local GPR models were individually fitted to homo-
geneous trainingdata in eachdata subset, and the separate localGPRmodels
representing respective PESs were used to generate local synthetic energies
for each subsystem.

ANN potential training
All of the ANN training and prediction was carried out using the atomic
energy network (ænet)42 and ænet-PyTorch87 packages. The AdamW
optimization algorithm99,100 with a learning rate of 0.0001 and a regular-
ization parameter of 0.001 was used for all of the training runs. Atomic
environments were represented using a Chebyshev descriptor83. The
system-specific parameters of the Chebyshev descriptors and ANN archi-
tectures are described in the following.

For the H-H dimer, a Chebyshev descriptor was constructed with a
radial cutoff radius of 8.0Å and a radial expansion order of 10. No angular
expansion was used for this linear molecule. The ANN architecture wasN-
5-5-1, where N is the descriptor dimension, the ANN gives a single output
value (the atomic energy), and the two hidden layers each had five nodes.
Hyperbolic tangent activation functions were used.

For the EC-EC dimers, the Chebyshev descriptors for the elements
C, H, and O were constructed as follows: the radial and angular
expansion orders were 12 and 4, respectively, and the radial and angular
cutoff radii were 6.5 and 4.0 Å, respectively. The ANN architecture for
each of the elements was 36-10-10-1 with hyperbolic tangent activation
functions. The batch size was 32 for energy-only and direct force
training, while a batch size of 256 was used for Taylor-ANN and GPR-
ANN training.

For the Li-EC structures, the Chebyshev descriptors used the same
parameters as those of the ECmolecule above for all elements, and theANN
architecture was also identical.

For the heterogeneous Li-EC database, the same radial and angular
expansion orders (12 and 4) were used for the Chebyshev descriptors. In
order to compare the memory and cost overhead with respect to the cutoff
radius for atomicdescriptors, several different radial and angular cutoff radii
were tested: 6.5 and 4.0 Å, 8.5 and 6.0 Å, and 10.5 and 8.0 Å. The ANN
architecture for each of the elements was 36-10-10-1 with hyperbolic tan-
gent activation functions as before, and different batch sizes were tested as
described in the main text.

Data availability
The reference Li/C/H/O dataset can be obtained from the Materials Cloud
repository (https://doi.org/10.24435/materialscloud:w6-9a). The data set
contains atomic structures and interatomic forces in the XCrySDen struc-
ture format (XSF), and total energies are included as additional meta
information.

Code availability
This work made use of the free and open-source atomic energy network
(ænet),ænet-PyTorchpackage.The source code canbeobtained either from
theænetWebsite (http://ann.atomistic.net) or fromGitHub (https://github.
com/atomisticnet/aenet-PyTorch). The GPR code with example input and
output files and a tutorial can also be obtained from the ænet-GPR GitHub
(https://github.com/atomisticnet/aenet-gpr).
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