

View

Online

Export
Citation

CrossMark

RESEARCH ARTICLE | APRIL 25 2023

ænet-PyTorch: A GPU-supported implementation for
machine learning atomic potentials training
Special Collection: Software for Atomistic Machine Learning

Jon López-Zorrilla; Xabier M. Aretxabaleta; In Won Yeu; ... et. al

J. Chem. Phys. 158, 164105 (2023)
https://doi.org/10.1063/5.0146803

Articles You May Be Interested In

AENET–LAMMPS and AENET–TINKER: Interfaces for accurate and efficient molecular dynamics
simulations with machine learning potentials

J. Chem. Phys. (August 2021)

GPU-accelerated approximate kernel method for quantum machine learning

J. Chem. Phys. (December 2022)

Ariadne: PyTorch library for particle track reconstruction using deep learning

AIP Conference Proceedings (September 2021)

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://pubs.aip.org/aip/jcp/article/158/16/164105/2885330/anet-PyTorch-A-GPU-supported-implementation-for
https://pubs.aip.org/aip/jcp/article/158/16/164105/2885330/anet-PyTorch-A-GPU-supported-implementation-for?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/158/16/164105/2885330/anet-PyTorch-A-GPU-supported-implementation-for?pdfCoverIconEvent=crossmark
https://pubs.aip.org/jcp/collection/1349/Software-for-Atomistic-Machine-Learning
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/5.0146803
https://pubs.aip.org/aip/jcp/article/155/7/074801/484688/AENET-LAMMPS-and-AENET-TINKER-Interfaces-for
https://pubs.aip.org/aip/jcp/article/157/21/214801/2842352/GPU-accelerated-approximate-kernel-method-for
https://pubs.aip.org/aip/acp/article/2377/1/040004/658163/Ariadne-PyTorch-library-for-particle-track
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2061396&setID=592934&channelID=0&CID=740896&banID=520944490&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1683509791997390&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0146803%2F16971223%2F164105_1_5.0146803.pdf&hc=65b9242051bdfc66013bcd2b847461466480a4dc&location=

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ænet-PyTorch: A GPU-supported
implementation for machine learning
atomic potentials training

Cite as: J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803
Submitted: 16 February 2023 • Accepted: 4 April 2023 •
Published Online: 25 April 2023

Jon López-Zorrilla,1,a) Xabier M. Aretxabaleta,1 In Won Yeu,2 Iñigo Etxebarria,1 ,3 Hegoi Manzano,1

and Nongnuch Artrith4,b)

AFFILIATIONS
1 Physics Department, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Leioa, Spain
2Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
3EHU Quantum Center, University of the Basque Country (UPV/EHU), Basque Country, Leioa, Spain
4Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University,
Utrecht, The Netherlands

Note: This paper is part of the JCP Special Topic on Software for Atomistic Machine Learning.
a)Electronic mail: jon.lopezz@ehu.eus
b)Author to whom correspondence should be addressed: n.artrith@uu.nl

ABSTRACT
In this work, we present ænet-PyTorch, a PyTorch-based implementation for training artificial neural network-based machine learning inter-
atomic potentials. Developed as an extension of the atomic energy network (ænet), ænet-PyTorch provides access to all the tools included in
ænet for the application and usage of the potentials. The package has been designed as an alternative to the internal training capabilities of
ænet, leveraging the power of graphic processing units to facilitate direct training on forces in addition to energies. This leads to a substantial
reduction of the training time by one to two orders of magnitude compared to the central processing unit implementation, enabling direct
training on forces for systems beyond small molecules. Here, we demonstrate the main features of ænet-PyTorch and show its performance
on open databases. Our results show that training on all the force information within a dataset is not necessary, and including between 10%
and 20% of the force information is sufficient to achieve optimally accurate interatomic potentials with the least computational resources.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146803

I. INTRODUCTION

In recent years, machine learning methods have gained pop-
ularity as methods to simulate large complex systems due to their
ability to predict properties of materials with high accuracy and
low computational cost. In particular, machine learning interatomic
potentials1 (MLPs) are data-driven methods that allow the pre-
diction of energies and forces of atomic structures with precision
similar to that of the scheme used to generate the reference data
but several orders of magnitude faster. Reference data are usually
obtained by first-principles calculations, such as density functional
theory2,3 (DFT) for bulk systems or post-Hartree–Fock methods for
molecular ones.4,5 Once trained, these potentials can be employed

in conjunction with other advanced simulation techniques, such as
molecular dynamics6 (MD), Monte Carlo7–9 (MC), and evolution-
ary algorithms.10 MLPs have been used with great success in a wide
variety of fields including physics, chemistry, and industry, in appli-
cations such as computing phonon properties,11,12 studying phase
diagrams,13,14 or predicting properties and structures of crystals and
molecules.15–18

Multiple MLP approaches have been proposed in the literature;
some examples include artificial neural network-based potentials
(ANN-based MLPs),19–21 Gaussian approximation potentials,22–24

kernel-based methods,25–27 message-passing networks,28–30 or spec-
tral neighbor analysis potentials31,32 among many others. In this
case, our focus lies on the first group, ANN-based MLPs, which is

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-1

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0146803
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0146803
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0146803&domain=pdf&date_stamp=2023-April-25
https://doi.org/10.1063/5.0146803
https://orcid.org/0000-0002-1156-1829
https://orcid.org/0000-0003-4107-3698
https://orcid.org/0000-0002-3707-0120
https://orcid.org/0000-0003-2681-2122
https://orcid.org/0000-0001-7992-2718
https://orcid.org/0000-0003-1153-6583
mailto:jon.lopezz@ehu.eus
mailto:n.artrith@uu.nl
https://doi.org/10.1063/5.0146803

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

based on one of the oldest and most studied methods in machine
learning. The main drawback of MLPs is that the calculations to
compile the reference dataset and training the potential is time- and
resource-intensive. Several fits are usually needed, i.e., the training
needs to be repeated several times, first to select the optimal hyperpa-
rameters and then to refine the MLP with techniques such as active
or on-the-fly learning.33–36 The simplest of the approaches relies on
training only on the energies of the reference structures. However,
this approach usually leads to poor predictions of forces, which are
the negative gradient of the predicted potential energy with respect
to the atomic coordinates and are of foremost importance to achieve
long stable MD simulations.37 Therefore, efficient techniques are
required to include force information in the training in addition to
the reference potential energies, which is far more computationally
demanding.

As in most fields concerning machine learning, Graphics Pro-
cessing Units (GPUs) provide the best solution to this problem.
Some work has already been done in recent years in this direction,
leading to updates of codes for training MLPs to include GPU sup-
port. For instance, that is the case of ANI,38 AMP,39 or deepMD,40 to
name but a few. Here, we present an extensive update of the atomic
energy network (ænet)41 code to allow MLP training on GPUs.
ænet has proved to be efficient, especially when handling systems
with many species. Our approach is simple: by using a well-known
ML framework, PyTorch,42 we replace the training process of ænet
while keeping full compatibility with all the other ænet resources.
In this paper, we describe the main characteristics of our code
called ænet-PyTorch and show its potential to train on both sys-
tem energy and atomic forces. We also show that training on all the
forces of a database is redundant by testing the code on several open
databases. The code will be available on GitHub as free, open-source
software.

A. Machine learning potentials
The main reason for the success of ANN-based MLPs is that

once trained, they can be used to predict energies and forces of
new structures independently of the number of atoms, yet they are
limited to the chemical species present in the reference data. This
is achieved by partitioning the energy of the system into atomic
contributions,

EANN
({σ(i)}) =

Natom

∑

i=1
Ei(σ(i)). (1)

A neural network is trained for each chemical element present in
the reference data, and the contribution of each atom (Ei) is then
evaluated using the network specific to its element. It is assumed
that the contribution of each atom i depends only on its local envi-
ronment (denoted as σ(i) in the previous equation). By numerically
describing those environments, via the so-called atomic fingerprints
or descriptors and training on the total energy of the system, the
resulting potential can be generalized independently of the num-
ber of atoms. Several ways of representing atomic environments can
be found in the literature,43–47 all of them satisfying a set of condi-
tions regarding symmetry with respect to the exchange of equivalent
atoms, rotations and translations of the structures, and smoothness
of the descriptor functions.

The training is an optimization process, so the first step is to
define the objective function to be minimized. There are two main
approaches: training only on energies or including also informa-
tion about the forces acting on each atom. In any case, the objective
function (also known as the loss function) is usually the root mean
squared error (RMSE) of the ANN output compared to the reference
value. We define the loss function (ℒEF) as a weighted sum of both
energy and force errors,

ℒEF = (1 − α)ℒE + αℒF , (2)

where α is a free weight parameter. RMSEs for energy (ℒE) and
forces (ℒF) are defined as

ℒE =

¿

Á
ÁÀ

1
Nstruc

Nstruc

∑

i=1
(EANN

i − EREF
i)

2
(3)

and

ℒF =

¿

Á
Á
ÁÀ

1
∑

Nstruc
i=1 3Natom,i

Nstruc

∑

i=1

Natom,i

∑

j=1
(FANN

i, j − FREF
i, j)

2
, (4)

where Nstruc is the number of structures in the database and Natom,i
is the amount of atoms in the ith structure. Here, the superscripts
ANN and REF denote the output of the MLP and the reference
value, respectively. For the sake of simplicity, the force error is nor-
malized per atom in the whole set, instead of having the average
of force error per structure. That is to say, we consider each force
vector as an independent training example.48 The outputs of the
MLP ANNs are the energy contributions of each atom in Eq. (1),
and the forces acting on each atom can be computed by taking the
gradient of the total energy with respect to the coordinates of the
atoms ({Rk}),

FANN
k = −∇kEANN

({σ(i)}) = −
Natom

∑

i=1

Ndescr

∑

n=1

∂Ei

∂σ(i)n

∂σ(i)n

∂Rk
. (5)

Training the network means finding an optimal set of weights
and biases that minimize the loss function. It is a common practice
to include one more term in the loss function, which is called reg-
ularization or weight decay. It is intended to avoid overfitting, i.e.,
finding a solution that minimizes the error for the training examples
but does not generalize to examples outside the reference dataset.49

Here, we consider the L2 regularization,50 introduced in the training
as an extra term in the loss function,

ℒ=ℒEF +
1
2

λ∑
i

w2
i , (6)

where {wi} is the set of all parameters to be fitted during training
and λ is a weighting parameter. In the following, that λ parameter
will be referred to as the regularization or weight decay term.

In practice, in each training epoch, the loss function in Eq. (6) is
not evaluated for the whole set of training examples but rather for a
subgroup of them at a time. This group, or batch, is used to approx-
imate the gradient of the loss function and to update the parameters
in the network in each epoch.

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-2

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

II. ænet-PyTorch
A. ænet

ænet41 provides a tool for generating, testing, and applying
machine learning interatomic potentials based on the Behler–
Parrinello method,1 entirely written in Fortran 2003. Currently, it
includes two different descriptors: the original Behler atom-centered
symmetry functions1,51 and the Chebyshev descriptors52 by Artrith
et al. Nonetheless, it is worth noting that this update of the code
is independent of the descriptor, so any future addition of new
descriptors in the original ænet code would be compatible with
ænet-PyTorch.

ænet also includes the utilities to employ the MLPs in real appli-
cations, for example, in molecular dynamics simulations6 [using
the interface with Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS)53 or TINKER54], in path integral molecular
dynamics,55 or in any of the capabilities provided in the Atomic Sim-
ulation Environment56 Python package. Our new program has been
designed as an extension to the original ænet code, and all of these
utilities that ænet provides can be readily used with the potentials
generated by ænet-PyTorch.

Including force information in the training increases the trans-
ferability of the potentials, improving the force prediction and finally
enhancing the stability of MD simulations. Nevertheless, despite
ænet’s parallel implementation’s efficient scaling on central process-
ing units (CPUs), training on both energies and forces has been
limited to simple systems with a small number of atoms due to
its significant requirements for computational time and memory.
That is the main reason why we consider this GPU implementa-
tion through PyTorch necessary so that the force training becomes
feasible for complex systems within our ænet framework.

B. ænet-PyTorch implementation

The principal novelties included in the training scheme of
ænet-PyTorch are the capability to train MLPs using GPU in addi-
tion to CPU cores and training both on reference energies and
atomic forces. ænet-PyTorch also provides users with easy access
to various optimization algorithms and overfitting prevention tech-
niques, such as dropout and batch-normalization layers, all available
within the PyTorch framework. All of these are easily implementable
and customizable for users.

PyTorch is a free and open-source machine learning frame-
work based on the TorchLib library with a Python interface. It
contains routines to enable efficient training of deep neural networks
with CPU and GPU support, via the C++ and CUDA-based code,
respectively. In contrast to other PyTorch-based implementations of
MLPs, which usually rely on custom CUDA or C++ modules, this
one is written completely in Python using only PyTorch’s built-in
functions. More specifically, GPUs are best suited for tensor oper-
ations, so most operations must be expressed as such to achieve
optimal performance.

The optimization strategy (depicted in Fig. 1) involves group-
ing all atoms of the same species together before training. This allows
a single network call to predict the energies of all atoms of that type.
PyTorch handles the parallel computation of atomic energies and
forces internally. The process of grouping all the atoms and later
reordering the resulting atomic energies and forces is also performed
using only PyTorch’s built-in routines, so it is also a parallel process.
As we will see in Sec. III, this idea leads to great scaling of the code,
particularly on GPU.

For a detailed explanation of the capabilities and options
of the code, the user is referred to the documentation of the

FIG. 1. In this example of the workflow of the code, the dataset is composed of two structures: A with one water molecule and B with a cluster of two water molecules.
First, all the descriptors of the hydrogen atoms of both A and B structures are grouped in the same tensor and so are the ones for the oxygen atoms. A single call to
the neural network for the hydrogen (oxygen) atoms computes the atomic contribution of all of the atoms of that element. Then, the ordering process is reverted and the
atomic energies are grouped per structure again. Finally, the contributions of each atom are summed to obtain the total energy of each structure, EANN

A and EANN
B . All these

operations are implemented via built-in PyTorch routines.

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-3

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

code, which can be found online in the GitHub repository
(https://github.com/atomisticnet/aenet-pytorch) together with the
code and an example of its usage. However, some of them are worth
noting, and they will be tested in the following. One of the main
concerns when developing MLPs is the resources needed to train
forces, both in terms of computational time and memory. It must be
noted that with our implementation, we decided to sacrifice mem-
ory resources to speed up the training several orders of magnitude.
However, some options have been included to reduce those mem-
ory requirements for large datasets, both CPU and GPU memory
(called RAM and VRAM, respectively):

● GPU (gpu): This mode stores all the data needed on the
GPU memory. Despite being the fastest way, storing all
the data in the GPU device might be problematic for large
datasets. The aim of this storage mode is to minimize GPU
VRAM usage while optimizing the execution time, assum-
ing that the VRAM is generally the bottleneck. Therefore,
all information is loaded into the CPU RAM first and then
moved to the VRAM after preprocessing the data.

● GPU (cpu): If enough RAM is available but that of the GPU
is limited, the data can be all stored in the CPU RAM. When
each batch is processed, only the required data for that batch
is moved to the GPU. This one is a slightly slower approach,
as it requires constant communication between GPU and
CPU.

● CPU: All calculations are done using CPU cores, without
GPU support.

All three approaches [GPU (gpu), GPU (cpu), and CPU] will be
tested in Secs. III A and III B.

III. ænet-PyTorch SCALING
In order to test the performance of ænet-PyTorch, we will repli-

cate already published calculations using this new code and compare
the results with those published by their original authors. Let us first
consider the database used in the first ænet code release,41 formed
by 7815 structures belonging to different phases of bulk titanium
dioxides (TiO2). In this section, we will use this set of calculations
to check the performance of the code for energy and force training.
All MLP training would usually require the selection of an archi-
tecture for the ANN, but in our case, we will be using the one
that the authors proposed and proved to be optimal: 48–15–15–1
architecture using the Chebyshev polynomials as descriptors.

A. Energy training
As we have already stated, this implementation allows the usage

of all the tools in PyTorch, starting with all the optimization algo-
rithms. Therefore, we first aim to select the most appropriate set
of hyperparameters for the training. This includes the optimiza-
tion method, batch size, learning rate, and weight decay. To do so,
we consider all the variants of the Adam optimizer57–59 available in
PyTorch, batch sizes ranging from 64 to 1024, learning rates from
10−6 to 10−1, and weight decays from 10−5 to 10−2. This results in a
total of 600 training processes.

TABLE I. List of parameters yielding the best training results for the TiO2 database
using only energy information: batch size (BS), learning rate (LR), weight decay (WD),
and root mean squared error of the energy of the validation set (RMSE). The RMSE
is given in meV/atom.

Method BS LR WD RMSE

Adagrad 64 10−1 10−4 4.221
Adamw 128 10−4 10−5 4.434
Adamw 256 10−4 10−5 4.387
Adamax 512 10−3 10−5 4.310
Adamax 1024 10−3 10−4 4.877

The models are evaluated based on their accuracy on the inde-
pendent validation set, and the best results are displayed in Table I.
All calculations are performed for 104 training epochs to ensure that
those with lower learning rates have also converged. In the following,
a training epoch refers to a single iteration of the learning algo-
rithm over the entire training dataset, i.e., processing the entire set
once, independently of the number of batches in which the data are
divided.

It has already been discussed that the feature that makes ænet-
PyTorch efficient is the grouping of atoms of the same species before
training. This has some implications: the time needed per epoch
considerably decreases with the increase of the batch size, but it
comes at the cost of more memory. Figure 2 shows the time needed
per epoch for different batch sizes. The number of epochs needed to
achieve convergence depends on each specific case; notwithstanding,
the time per epoch is a good indicator of the scaling of the code. For
each value, the best combination of method, learning rate, and reg-
ularization have been selected based on the results shown in Table I.
The time needed for training considerably decreases when using
GPU. The improvement ranges from one to two orders of magni-
tude, increasing with the batch size. On the other hand, the memory
used also increases with the batch size, so in some cases, it would be
better to save the dataset information in the CPU RAM so as to find
a trade-off between time- and memory-efficiency. In that case, the
speedup is still considerable while keeping the GPU memory (which
is usually the limiting computational feature) more moderate. How-
ever, these problems rarely arise from calculations involving only
energies.

These results show that energy training with ænet-PyTorch is
efficient even on CPUs, considering that the CPU computations here
are performed using only 2 CPU cores. As a reference, this training
time is similar to that needed in the original ænet to obtain a similar
error training with 16 processors. This comparison is not completely
fair, since ænet uses an optimization algorithm much slower, the
limited memory BGFS algorithm.

B. Force training
Let us now consider the new feature introduced with this code,

i.e., training on atomic forces in addition to energies. In this case,
we will use the optimal training hyperparameters selected for energy
training, and we will focus on two other parameters influencing
force training: the α parameter from Eq. (2) weighting the energy
and force RMSEs in the loss function and the fraction of structures

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-4

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp
https://github.com/atomisticnet/aenet-pytorch

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Resources used for training the
neural network on the energies of the
TiO2 database as a function of the batch
size: (a) time per training epoch,
(b) CPU RAM memory, and (c) GPU
VRAM memory.

with force information. Regarding the former, the α parameter is
bounded from 0 to 1, i.e., from pure energy training to only training
on forces. As for the latter, some works in the field already sug-
gest that including the forces of all the atoms of every structure in
the reference set is not necessary to reach accurate predictions: Sin-
graber et al. used from 0.41% to 4.1%,48 and Artrith et al. stated
that 10% was enough.60,61 The results of our tests are depicted in
Fig. 3, where both the energy and force RMSEs are displayed as a
function of the fraction of structures whose forces have been used in
the training. These structures are randomly selected from the whole
training set.

First, the α parameter determines the balance between the accu-
racy of energies and forces. Lower values result in lower error of
energies but higher error of forces, while higher values result in
the opposite. For MD simulations, getting accurate forces is more
important to ensure the stability of the simulations, whereas for
Monte Carlo calculations, the energy is the main issue. Therefore,
we need to find a balance between accuracy in energies and forces
depending on the task at hand. It is important to note that the
introduction of forces helps to generalize the prediction of ener-
gies in regions that are not included in the training examples,38,43

so in most cases, the introduction of forces will be beneficial to
some extent.

In our current example, the prediction error for forces
decreases with increasing alpha, but for values above 0.1, the perfor-
mance improves very little. In the case of the energies, all the models
with α below 0.3 predict energies with an accuracy on the order of 1
meV/atom. Thus, we can conclude that α ∈ (0.1, 0.3) is the optimal
range of values for a general-purpose potential for this system.

As shown in Fig. 3(b), the error of the forces does indeed
decrease when adding more force information to the training set.
However, this improvement diminishes when the percentage of
forces included is high enough. This means that including from 10%
to 20% is sufficient to achieve results close to the best performance
that the model can provide.

Moreover, the number of forces included in the training exam-
ples heavily influences the computational requirements. This is
shown in Fig. 4, where the training time, CPU RAM memory, and
GPU VRAM memory for all three training strategies are displayed,
this time as a function of the percentage of forces included. First,
we note that including forces, even the smallest amount, increases
at least 1 order of magnitude the time needed for training, which
increases with the fraction of forces included. However, it is the
memory that suffers the most with the addition of forces, rapidly
increasing with it. This is somewhat mitigated by storing all the
batch information in the CPU and only moving to the GPU the
information one at a time. In any case, as Sec. IV will show, in most
applications, including more than a small subset of the forces in the
training set is not worth the computational cost.

It must be noted that in these calculations, all of the structures
in the dataset are used for fitting the energy, whereas only a fraction
of them are considered for training forces. Thus, let us investigate
the importance of including the energy information of the structures
that are not considered for force training. To do so, we have trained
MLPs with only small portions of the structures of the dataset but
training with all their forces in each case, i.e., excluding the energy-
only structures from the training. Our results in Fig. 5 show that the
removal of the remaining data for energy training heavily impacts

FIG. 3. Validation error of (a) energy and
(b) forces as a function of the percent-
age of force information included in the
training for different values of the weight
parameter α for the TiO2 database. The
gray region is meant to guide the eye
toward the set of parameters that we
consider optimal.

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-5

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Resources used for training the
neural network on both energies and
forces of the TiO2 database as a func-
tion of the fraction of force information
included: (a) time per training epoch,
(b) CPU RAM memory, and (c) GPU
VRAM memory.

FIG. 5. (a) Energy and (b) force RMSE of the TiO2 dataset for the two dataset convergence approaches. The blue bars correspond to the approach discussed so far, i.e.,
using the energies of all structures in the dataset for training and an increasing fraction of the atomic forces. The yellow bars indicate the results for an alternative approach,
training on an increasing fraction of the structures but using all of the force and energy information.

the prediction of energies, especially when the percentage of data
used is small. The prediction of forces is also affected, but not nearly
as much. Thus, we conclude that adding force information helps
generalize the energy prediction around the data points included
in the training set, but for structures far from the reference ones,
the prediction is not as accurate. Therefore, structures from all over
the potential energy surface should be included in the training set to
achieve accurate models.

IV. BENCHMARK ON OPEN DATA SETS
In this section, we will benchmark our code using several open

databases and compare them with the results obtained by their
authors. Unless otherwise stated, the descriptor used has been the
Chebyshev polynomials with the same parameters as in the refer-
ence article, and so is the chosen architecture. Here, we will use
α = 0.1 to weigh the error for energy and force. Based on the anal-
ysis performed in Sec. III B, the prediction of energies is expected
to be slightly less accurate than the one that would be achieved by
fitting energies alone, but that will also result in more accurate force
predictions.

A. Titanium dioxide
First, we summarize the results that have already been shown

during this paper for the database of 7815 structures of several tita-
nium dioxide phases developed by Artrith and Urban and which was

used to test the original ænet code in its first release.41 Reference
energy and forces were obtained from DFT calculations using the
Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional.62

In that work, the model was fitted only to the reference energies,
and the descriptor used was the Behler–Parrinello symmetry func-
tions.51 The best fit resulted in an error of around 4 meV/atom
in the energies, while the error on forces was not quantified in
that work.

Our results are shown in Fig. 6, where we include the errors in
energies and forces for both the training and testing sets. As we have
already mentioned before, the error in energies slightly increases
with the number of forces, while the one for forces drastically dimin-
ishes. The red dotted line shows the error obtained in the original
work, which is slightly better than the one we get here for the energy.
This is due to the choice of the α parameter; a similar accuracy to that
of the original article could be obtained by reducing the value of that
parameter, but this would come at the cost of increasing the error of
the force prediction (for example, with α = 0.01 in Fig. 4).

On the other hand, the error of the predicted absolute value
of force converges to around 0.3 eV/Å with only 20% of forces
included in the training. This error corresponds to around 2% of the
mean force of the structures on the dataset (∼20 eV/Å). Figure 6(c)
shows the error in the direction of the predicted forces for different
percentages. The addition of forces greatly improves its prediction,
which is of great importance for MD simulations to be stable and
accurate. Note that in cases where the absolute value of the force is
smaller, the error in direction is more likely to be larger.63

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-6

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. (a) Energy and (b) force RMSE of the TiO2 dataset for varying amount of force information. Blue for the training set and yellow for the validation set. The red dotted
lines show the results obtained by the original authors of the dataset. (c) Distribution of the error of the direction of the predicted forces, computed as the angle between the
reference and the predicted forces.

B. Liquid water
Second, we consider a database composed of 9189 liquid water

structures, each with 192 atoms, whose energies and forces were
evaluated with the revised PBE functional and with the addition of
the Grimme D3 van-der-Waals correction.64 This dataset was used
by Chen et al. to test the performance of the LAMMPS and TINKER
interfaces of ænet.6 Water systems have been widely used as a bench-
marking system for new developments in the field of MLPs65–68 due
to their complexity, so many open databases can be found. This one
here is more of a challenge than the one for TiO2, since the number
of atoms in each structure is much higher and, therefore, so is the
number of reference forces to be fitted. In this case, the authors also
fitted the model to the reference energies.

This time, our results for energy training [Fig. 7(a)] are in excel-
lent agreement with the fitting of Chen et al., about 1 meV/atom. The
error in forces is again lower in our fit, reducing about 50% with the
smallest fraction of forces included. The absolute error of the forces
cannot be directly compared to the results for the previous dataset,
but the relative error is around 1% of the mean forces of the set,
which is much lower in this case (around 2 eV/Å) than that of TiO2.

The most remarkable improvement comes from the angle deviation
of forces, which becomes narrow around 0○.

C. Li–Mo–Ni–Ti oxide
Our next example is a much more complex quaternary oxide,

LMNTO, a database consisting of 2616 bulk structures, with
56 atoms each. Here, the SCAN semilocal functional69 was used
to evaluate energies and forces. This reference dataset was used by
Cooper et al. to test their method for including force information
via Taylor series expansions,63 so we have the reference value of the
errors for fitting to forces in addition to energies in this case. More-
over, being a system composed of five elements, it is a great example
of the case in which the Chebyshev polynomials excel as atomic fin-
gerprints, since the resulting descriptor size does not depend on the
total number of elements.52

Figure 8 demonstrates that our models perform equally well in
predicting energies compared to the reference models but outper-
form them in terms of force prediction. With no force information,
our models have a higher error than that of Cooper et al.; however,

FIG. 7. (a) Energy and (b) force RMSE of the H2O dataset as a function of the percentage of forces included in the training stage. Blue for the training set and yellow for the
validation set. The red dotted lines show the results obtained by the original authors of the dataset. (c) Distribution of the error of the direction of the predicted forces.

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-7

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. (a) Energy and (b) force RMSE of the LMNTO dataset as a function of the percentage of forces included in the training stage. Blue for the training set and yellow for
the validation set. The red dotted lines show the results obtained by the original authors of the dataset. (c) Distribution of the error of the direction of the predicted forces.

direct training on forces leads to improved performance over the
Taylor series expansion. As in the two previous examples, the inclu-
sion of forces initially increases energy error, but when sufficient
force information is included, our models perform better than with
only energy training. This highlights the benefit of incorporating
forces in enhancing the generalization and transferability of the
potentials.

D. Amorphous LixSi materials
The last database that we will consider consists of about 45 000

structures of amorphous LixSi, developed using a combination of
density functional theory calculations, using the PBE functional, and
evolutionary algorithms.10 This set includes many phases with dif-
ferent stoichiometry, both bulk surfaces and nanoparticles. In this
case, only energies are included in the database, so force training is
not possible, but it will still be useful to see the performance of our
code in a large database with many atoms per structure.

The best fit using ænet-PyTorch yields an error of
6.5 meV/atom in the training set and 7.6 meV/atom in the
testing set, which is as good as the reference fit (6.3 meV/atom in
training and 7.7 eV/atom in testing). As for the resources, 10 GB
of memory was needed to fit the energies of the whole set with
128 structures per batch.

V. CONCLUSIONS
The last decade has shown that MLPs will play an important

role in the study of new and complex materials at the atomic scale,
and this has created a huge demand for tools to efficiently train
such potentials. Training on GPUs is the standard practice in most
fields of machine learning, and here, we presented an upgrade of the
original ænet software to provide this capability. The ænet-PyTorch
extension ensures that training the neural networks is no longer a
bottleneck in the development of MLPs, even when accurate forces
are required.

We demonstrated with different materials examples that ænet-
PyTorch is efficient, particularly when training only on energies. The

CPU version of the code is as fast as the original ænet implemen-
tation, and the GPU implementation reduces the training time by
one to two orders of magnitude. Due to its compatibility with the
ænet package, we expect this extension to have great synergy with the
other features available in ænet, such as including force information
in the training via a Taylor series expansion.63

If, on the other hand, direct training using atomic forces
is desired, this is now feasible with the ænet-PyTorch code. We
demonstrated that directly including force information in the train-
ing process is possible with ænet-PyTorch, thanks to the compu-
tationally efficient GPU implementation. Nonetheless, we strongly
recommend users to include only a small fraction of forces in the
training, since our benchmarks on systems with different numbers
of atomic species, numbers of atoms, and dataset sizes demonstrated
that accurate models can be obtained by including between 10% and
20% of the force information.

ACKNOWLEDGMENTS
This work was supported by the “Departamento de Educación,

Política Lingüística y Cultura del Gobierno Vasco” (IT1458-22),
the “Ministerio de Ciencia e Innovación” (Grant No. PID2019-
106644GB-I00), and the Project HPC-EUROPA3 (Grant No.
INFRAIA-2016-1-730897), with the support of the EC Research
Innovation Action under the H2020 Programme. The authors
acknowledge technical and human support provided by SGIker
(UPV/EHU/ERDF, EU) and the Duch National e-Infrastructure and
the SURF Cooperative for computational resources (National Super-
computer Snellius). J.L.-Z. acknowledges financial support from the
Basque Country Government (PRE_2019_1_0025). N.A. acknowl-
edges funding from the Bayer AG Life Science Collaboration
(“!AIQU”).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-8

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Author Contributions

Jon López-Zorrilla: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Funding acquisition (equal); Inves-
tigation (equal); Methodology (equal); Software (equal); Validation
(equal); Visualization (equal); Writing – original draft (equal); Writ-
ing – review & editing (equal). Xabier M. Aretxabaleta: Data cura-
tion (equal); Formal analysis (equal); Investigation (equal); Writ-
ing – review & editing (equal). Inwon Yeu: Validation (equal);
Writing – review & editing (equal). Iñigo Etxebarria: Conceptu-
alization (equal); Supervision (equal); Writing – review & edit-
ing (equal). Hegoi Manzano: Conceptualization (equal); Funding
acquisition (equal); Supervision (equal); Writing – review & edit-
ing (equal). Nongnuch Artrith: Conceptualization (equal); Funding
acquisition (equal); Methodology (equal); Resources (equal); Soft-
ware (equal); Supervision (equal); Validation (equal); Visualization
(equal); Writing – original draft (equal); Writing – review & editing
(equal).

DATA AVAILABILITY
ænet-PyTorch is open source and free for everyone to use and

customize, as is the ænet package. The ænet-PyTorch code can
be obtained from https://github.com/atomisticnet/aenet-PyTorch.
Being written purely in Python and PyTorch, we believe that this
code can be easily used for prototyping new techniques based
on PyTorch features, such as custom loss functions, learning rate
schedulers, and dropout layers to reduce overfitting.

REFERENCES
1J. Behler and M. Parrinello, “Generalized neural-network representation of high-
dimensional potential-energy surfaces,” Phys. Rev. Lett. 98, 146401 (2007).
2K. Burke, “Perspective on density functional theory,” J. Chem. Phys. 136, 150901
(2012).
3L. Fiedler, K. Shah, M. Bussmann, and A. Cangi, “Deep dive into machine learn-
ing density functional theory for materials science and chemistry,” Phys. Rev.
Mater. 6, 040301 (2022).
4R. F. Bishop and H. G. Kümmel, “The coupled-cluster method,” Phys. Today
40(3), 52 (1987).
5J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros,
S. Tretiak, O. Isayev, and A. E. Roitberg, “Approaching coupled cluster accuracy
with a general-purpose neural network potential through transfer learning,” Nat.
Commun. 10, 2903 (2019).
6M. S. Chen, T. Morawietz, H. Mori, T. E. Markland, and N. Artrith,
“AENET–LAMMPS and AENET–TINKER: Interfaces for accurate and efficient
molecular dynamics simulations with machine learning potentials,” J. Chem.
Phys. 155, 074801 (2021).
7H.-A. Chen, P.-H. Tang, G.-J. Chen, C.-C. Chang, and C.-W. Pao,
“Microstructure maps of complex perovskite materials from extensive Monte
Carlo sampling using machine learning enabled energy model,” J. Phys. Chem.
Lett. 12, 3591–3599 (2021).
8Y. Nagai, M. Okumura, K. Kobayashi, and M. Shiga, “Self-learning hybrid Monte
Carlo: A first-principles approach,” Phys. Rev. B 102, 041124(R) (2020).
9A. Tirelli, G. Tenti, K. Nakano, and S. Sorella, “High-pressure hydrogen by
machine learning and quantum Monte Carlo,” Phys. Rev. B 106, L041105 (2022).
10N. Artrith, A. Urban, and G. Ceder, “Constructing first-principles phase dia-
grams of amorphous LixSi using machine-learning-assisted sampling with an
evolutionary algorithm,” J. Chem. Phys. 148, 241711 (2018).

11A. P. Bartók, J. Kermode, N. Bernstein, and G. Csányi, “Machine learning a
general-purpose interatomic potential for silicon,” Phys. Rev. X 8, 041048 (2018).
12P. Rowe, G. Csányi, D. Alfe, and A. Michaelides, “Development of a machine
learning potential for graphene,” Phys. Rev. B 97, 054303 (2018).
13P. Y. Chew and A. Reinhardt, “Phase diagrams—Why they matter and how to
predict them,” J. Chem. Phys. 158, 030902 (2022).
14I. A. Kruglov, A. Yanilkin, A. R. Oganov, and P. Korotaev, “Phase diagram of
uranium from ab initio calculations and machine learning,” Phys. Rev. B 100,
174104 (2019).
15K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, “Machine learning of
molecular properties: Locality and active learning,” J. Chem. Phys. 148, 241727
(2018).
16G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, “Accelerating
materials property predictions using machine learning,” Sci. Rep. 3, 2810 (2013).
17E. V. Podryabinkin, E. V. Tikhonov, A. V. Shapeev, and A. R. Oganov,
“Accelerating crystal structure prediction by machine-learning interatomic poten-
tials with active learning,” Phys. Rev. B 99, 064114 (2019).
18J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, and M. A. L. Marques, “Predicting
the thermodynamic stability of solids combining density functional theory and
machine learning,” Chem. Mater. 29, 5090–5103 (2017).
19J. Behler, “Neural network potential-energy surfaces in chemistry: A tool for
large-scale simulations,” Phys. Chem. Chem. Phys. 13, 17930–17955 (2011).
20J. Behler, “First principles neural network potentials for reactive simulations of
large molecular and condensed systems,” Angew. Chem., Int. Ed. 56, 12828–12840
(2017).
21J. Behler, “Representing potential energy surfaces by high-dimensional neural
network potentials,” J. Phys.: Condens. Matter 26, 183001 (2014).
22A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons,” Phys. Rev.
Lett. 104, 136403 (2010).
23W. J. Szlachta, A. P. Bartók, and G. Csányi, “Accuracy and transferability of
Gaussian approximation potential models for tungsten,” Phys. Rev. B 90, 104108
(2014).
24A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi, and
M. Ceriotti, “Machine learning unifies the modeling of materials and molecules,”
Sci. Adv. 3, e1701816 (2017).
25S. T. John and G. Csányi, “Many-body coarse-grained interactions using
Gaussian approximation potentials,” J. Phys. Chem. B 121, 10934–10949 (2017).
26V. Botu, R. Batra, J. Chapman, and R. Ramprasad, “Machine learning force
fields: Construction, validation, and outlook,” J. Phys. Chem. C 121, 511–522
(2017).
27V. Botu and R. Ramprasad, “Learning scheme to predict atomic forces and
accelerate materials simulations,” Phys. Rev. B 92, 094306 (2015).
28J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in International Conference on Machine
Learning (PMLR, 2017), pp. 1263–1272.
29L.-Y. Xue, F. Guo, Y.-S. Wen, S.-Q. Feng, X.-N. Huang, L. Guo, H.-S. Li,
S.-X. Cui, G.-Q. Zhang, and Q.-L. Wang, “ReaxFF-MPNN machine learning
potential: A combination of reactive force field and message passing neural
networks,” Phys. Chem. Chem. Phys. 23, 19457–19464 (2021).
30K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko,
“Quantum-chemical insights from deep tensor neural networks,” Nat. Commun.
8, 13890 (2017).
31A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, “Spectral
neighbor analysis method for automated generation of quantum-accurate inter-
atomic potentials,” J. Comput. Phys. 285, 316–330 (2015).
32M. A. Wood and A. P. Thompson, “Extending the accuracy of the snap
interatomic potential form,” J. Chem. Phys. 148, 241721 (2018).
33V. Botu and R. Ramprasad, “Adaptive machine learning framework to accelerate
ab initio molecular dynamics,” Int. J. Quantum Chem. 115, 1074–1083 (2015).
34T. L. Jacobsen, M. S. Jørgensen, and B. Hammer, “On-the-fly machine learn-
ing of atomic potential in density functional theory structure optimization,” Phys.
Rev. Lett. 120, 026102 (2018).

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-9

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp
https://github.com/atomisticnet/aenet-PyTorch
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1063/1.4704546
https://doi.org/10.1103/physrevmaterials.6.040301
https://doi.org/10.1103/physrevmaterials.6.040301
https://doi.org/10.1063/1.881103
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1063/5.0063880
https://doi.org/10.1063/5.0063880
https://doi.org/10.1021/acs.jpclett.1c00410
https://doi.org/10.1021/acs.jpclett.1c00410
https://doi.org/10.1103/physrevb.102.041124
https://doi.org/10.1103/physrevb.106.l041105
https://doi.org/10.1063/1.5017661
https://doi.org/10.1103/physrevx.8.041048
https://doi.org/10.1103/physrevb.97.054303
https://doi.org/10.1063/5.0131028
https://doi.org/10.1103/physrevb.100.174104
https://doi.org/10.1063/1.5005095
https://doi.org/10.1038/srep02810
https://doi.org/10.1103/physrevb.99.064114
https://doi.org/10.1021/acs.chemmater.7b00156
https://doi.org/10.1039/c1cp21668f
https://doi.org/10.1002/anie.201703114
https://doi.org/10.1088/0953-8984/26/18/183001
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevb.90.104108
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1021/acs.jpcb.7b09636
https://doi.org/10.1021/acs.jpcc.6b10908
https://doi.org/10.1103/physrevb.92.094306
https://doi.org/10.1039/d1cp01656c
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1063/1.5017641
https://doi.org/10.1002/qua.24836
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1103/PhysRevLett.120.026102

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

35C. Wang, K. Aoyagi, P. Wisesa, and T. Mueller, “Lithium ion conduction in
cathode coating materials from on-the-fly machine learning,” Chem. Mater. 32,
3741–3752 (2020).
36R. Jinnouchi, F. Karsai, and G. Kresse, “On-the-fly machine learning force field
generation: Application to melting points,” Phys. Rev. B 100, 014105 (2019).
37O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt,
A. Tkatchenko, and K.-R. Müller, “Machine learning force fields,” Chem. Rev. 121,
10142–10186 (2021).
38X. Gao, F. Ramezanghorbani, O. Isayev, J. S. Smith, and A. E. Roitberg,
“TorchANI: A free and open source PyTorch-based deep learning implementa-
tion of the ANI neural network potentials,” J. Chem. Inf. Model. 60, 3408–3415
(2020).
39A. Khorshidi and A. A. Peterson, “Amp: A modular approach to machine
learning in atomistic simulations,” Comput. Phys. Commun. 207, 310–324 (2016).
40H. Wang, L. Zhang, J. Han, and W. E, “DeePMD-kit: A deep learning pack-
age for many-body potential energy representation and molecular dynamics,”
Comput. Phys. Commun. 228, 178–184 (2018).
41N. Artrith and A. Urban, “An implementation of artificial neural-network
potentials for atomistic materials simulations: Performance for TiO2,” Comput.
Mater. Sci. 114, 135–150 (2016).
42A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information Processing
Systems 32 (2019).
43G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, and M. Ceriotti,
“Automatic selection of atomic fingerprints and reference configurations for
machine-learning potentials,” J. Chem. Phys. 148, 241730 (2018).
44F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi, and M. Ceriotti,
“Physics-inspired structural representations for molecules and materials,” Chem.
Rev. 121, 9759–9815 (2021).
45M. Yaghoobi and M. Alaei, “Machine learning for compositional disorder:
A comparison between different descriptors and machine learning frameworks,”
Comput. Mater. Sci. 207, 111284 (2022).
46A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical
environments,” Phys. Rev. B 87, 184115 (2013).
47S. De, A. P. Bartók, G. Csányi, and M. Ceriotti, “Comparing molecules and
solids across structural and alchemical space,” Phys. Chem. Chem. Phys. 18,
13754–13769 (2016).
48A. Singraber, T. Morawietz, J. Behler, and C. Dellago, “Parallel multistream
training of high-dimensional neural network potentials,” J. Chem. Theory
Comput. 15, 3075–3092 (2019).
49A. M. Miksch, T. Morawietz, J. Kästner, A. Urban, and N. Artrith, “Strategies for
the construction of machine-learning potentials for accurate and efficient atomic-
scale simulations,” Mach. Learn.: Sci. Technol. 2, 031001 (2021).
50A. Krogh and J. Hertz, “A simple weight decay can improve generalization,” in
Advances in Neural Information Processing Systems 4 (1991).
51J. Behler, “Atom-centered symmetry functions for constructing high-
dimensional neural network potentials,” J. Chem. Phys. 134, 074106 (2011).
52N. Artrith, A. Urban, and G. Ceder, “Efficient and accurate machine-learning
interpolation of atomic energies in compositions with many species,” Phys. Rev. B
96, 014112 (2017).

53A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in’ t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen,
R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton,
“LAMMPS—A flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 108171
(2022).
54J. A. Rackers, Z. Wang, C. Lu, M. L. Laury, L. Lagardère, M. J. Schnieders,
J.-P. Piquemal, P. Ren, and J. W. Ponder, “Tinker 8: Software tools for molecular
design,” J. Chem. Theory Comput. 14, 5273–5289 (2018).
55H. Kimizuka, B. Thomsen, and M. Shiga, “Artificial neural network-based path
integral simulations of hydrogen isotope diffusion in palladium,” J. Phys.: Energy
4, 034004 (2022).
56A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I. E. Castelli, R. Chris-
tensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus et al., “The atomic
simulation environment—A Python library for working with atoms,” J. Phys.:
Condens. Matter 29, 273002 (2017).
57D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 (2014).
58M. D. Zeiler, “ADADELTA: An adaptive learning rate method,”
arXiv:1212.5701 (2012).
59I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv:1711.05101 (2017).
60N. Artrith and J. Behler, “High-dimensional neural network potentials for metal
surfaces: A prototype study for copper,” Phys. Rev. B 85, 045439 (2012).
61N. Artrith, B. Hiller, and J. Behler, “Neural network potentials for metals and
oxides—First applications to copper clusters at zinc oxide,” Phys. Status Solidi B
250, 1191–1203 (2013).
62J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
made simple,” Phys. Rev. Lett. 77, 3865 (1996).
63A. M. Cooper, J. Kästner, A. Urban, and N. Artrith, “Efficient training of
ANN potentials by including atomic forces via Taylor expansion and appli-
cation to water and a transition-metal oxide,” npj Comput. Mater. 6, 54
(2020).
64S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate
ab initio parametrization of density functional dispersion correction (DFT-D) for
the 94 elements H-Pu,” J. Chem. Phys. 132, 154104 (2010).
65A. P. Bartók, M. J. Gillan, F. R. Manby, and G. Csányi, “Machine-learning
approach for one- and two-body corrections to density functional theory:
Applications to molecular and condensed water,” Phys. Rev. B 88, 054104
(2013).
66B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti, “Ab initio thermo-
dynamics of liquid and solid water,” Proc. Natl. Acad. Sci. U. S. A. 116, 1110–1115
(2019).
67V. Quaranta, J. Behler, and M. Hellström, “Structure and dynamics of the
liquid–water/zinc-oxide interface from machine learning potential simulations,”
J. Phys. Chem. C 123, 1293–1304 (2018).
68A. Singraber, J. Behler, and C. Dellago, “Library-based LAMMPS implementa-
tion of high-dimensional neural network potentials,” J. Chem. Theory Comput.
15, 1827–1840 (2019).
69J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropriately
normed semilocal density functional,” Phys. Rev. Lett. 115, 036402 (2015).

J. Chem. Phys. 158, 164105 (2023); doi: 10.1063/5.0146803 158, 164105-10

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0146803/16971223/164105_1_5.0146803.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1021/acs.chemmater.9b04663
https://doi.org/10.1103/physrevb.100.014105
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1021/acs.jcim.0c00451
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1063/1.5024611
https://doi.org/10.1021/acs.chemrev.1c00021
https://doi.org/10.1021/acs.chemrev.1c00021
https://doi.org/10.1016/j.commatsci.2022.111284
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1039/c6cp00415f
https://doi.org/10.1021/acs.jctc.8b01092
https://doi.org/10.1021/acs.jctc.8b01092
https://doi.org/10.1088/2632-2153/abfd96
https://doi.org/10.1063/1.3553717
https://doi.org/10.1103/physrevb.96.014112
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1021/acs.jctc.8b00529
https://doi.org/10.1088/2515-7655/ac7e6b
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1088/1361-648x/aa680e
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1711.05101
https://doi.org/10.1103/physrevb.85.045439
https://doi.org/10.1002/pssb.201248370
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1038/s41524-020-0323-8
https://doi.org/10.1063/1.3382344
https://doi.org/10.1103/physrevb.88.054104
https://doi.org/10.1073/pnas.1815117116
https://doi.org/10.1021/acs.jpcc.8b10781
https://doi.org/10.1021/acs.jctc.8b00770
https://doi.org/10.1103/PhysRevLett.115.036402

