

G03-SiGe, Ge & Related Compounds: Materials, Processing and Devices 16:30, 08, Oct, 2020 (HST)

Atomistic Understanding on the Surface of GaAs by Ab Initio Thermodynamics; From Equilibrium Shape to Growth Shape

In Won Yeu¹, Cheol Seong Hwang², Jung-Hae Choi¹

¹Electronic Materials Research Center, Korea Institute of Science and Technology ²Department of Materials Science and Engineering, Seoul National University

choijh@kist.re.kr

Integration of III-V on Si

13 14 14 15 14 15 15 Phosphorus Phosphorus		e ⁻ mobility (cm²/Vsec)	h⁺ mobility (cm²/Vsec)	Lattice constant (Å)
	GaAs	8,000	400	5.65
31 Ga 99.723 32 33 As 74.992	Si	1,400	500	5.43
49 In Indium 16.77. Tin 16.77. Tin 27.76 Addimony	GooCor	od electron mpatibility v	ic properties vith Si	3
GaAs on Si		Selec	ctive Area C	Growth
lattice mismatch→ DislocationDifference in thermal expansion coefficients→ Crack		→ Co → In	onfined to th hibition of p	ne bottom ropagation
Polar material on → Antiphase nonpolar surface boundary		→ Re sr	eduction due mall number	e to of nuclei
Understanding the surface energy & growth kinetics				

KIST

Contents

Morphology prediction by scale-bridging

II. Growth shape

-Nanowire growth

Asymmetric stacking

I. Surface energy & Equilibrium crystal shape (ECS)

I-1. Surface reconstruction & Surface energy of GaAs(100)

$\gamma(\mu)$ to $\gamma(T,P)$ by equil'm between surface &

CMP

Vibrational effects on $\gamma(T, P)$

GaAs(001) phase diagram (T, P_{As})

GaAs(100) surface transition (T, P_{As})

- Calculated transition lines show good agreements with experimental transition (T,P) points.
- At the transition lines, coexistence of reconstructions occurs in experiments.

Configurational entropy; Coexistence of reconstructions

A real situation is not the ground state,

rather an ensemble of possible configurations with statistical probability

Population of reconstruction i: $c_i = \frac{Z_i}{Z}$ where $i \in \{reconstructions\}$

I-2. Equilibrium crystal shape (ECS)

Surface in zinc blende symmetry

CMD

KIST

Reconstructions of various surfaces of GaAs

Wulff shape (T, P As) of GaAs

Wulff shape vs. Growth shape ??

Newly proposed reconstruction of (111)B

KIST

Wulff shape in accordance with experiments

II. GaAs (111)B nanowire

Two basics of NW growth

• Preferential nucleation

Layer-by-Layer growth

II-1. Nanowire (NW) growth

Anisotropic growth model

$$\Delta G_{sn} = V \Delta \mu_{sn} + Ph\gamma_{sn(side)} + A(\gamma_{sn(top)} - \gamma_{sc(top)})$$

What is the key factor that determines the direction of preferential nucleation?

Variation of surface reconstructions wrt (T,P)

Where would sources(Ga or As) be adsorbed at given (T,P) conditions?

Adsorption condition

(T,P) window of the preferential adsorption of As on (111)B: <111>B NW

$$\dot{N}_{n|Surf}(T,P) = \dot{C}(Surf,T,P) \cdot \exp\left(-\frac{\Delta G_{sn}^*(Surf,T,P)}{kT}\right)$$

"Preferential adsorption → nucleation → (111)B NW growth"

II-2. Asymmetric stacking

Asymmetric stacking: ANW vs. BNW

ANW growth

• VLS growth

Adv. Mater. 27, 6096 (2015).

J. Cryst. Growth 287, 5004 (2006).

•VS growth

Nanoscale 10, 17080 (2018).

Density of planar defects;

ANW << BNW

Anisotropic growth model

Energetics of fully formed NW

The SF formation must be a **probabilistic** event during **nucleation!!**

Nucleation-I without SF (ZB stacking)

ANW & BNW with SF

Nucleation–I with SF

Nucleation-I: ZB vs. SF

KIST

32/41

Asymmetric stacking in nucleation-I

Nucleation-II: on the SF-crystal

Nucleation-II: on the SF-crystal

Nucleation-II: TW vs. WZ

36/41

Asymmetric stacking in nucleation-II

NW experiments

Nanoscale 10, 17080 (2018)

"Unlike in A-polar case, B-polar NWs show high density of TW and alternating sections of ZB/WZ phases."

"The exceptional crystal quality of A-polar NWs calls for discussion."

Summary

Surface reconstructions of GaAs (100)

Equilibrium crystal shapes of GaAs

Nanowire growth of GaAs

38

Journal Papers on this Talk

Papers by Dr. In Won Yeu *et al.*

Sci. Rep. 7, 10691 (2017).

-Surface energy

Sci. Rep. 9, 1127 (2019).

-Equilibrium crystal shape

Appl. Surf. Sci. 497, 143740 (2019).

-Nanowire growth

Nanoscale 12, 17703 (2020).

-Asymmetric stacking of nanowires

Nanoscale

rsc.li/nanoscale

ISSN 2040-3372

APER .ng-Hae Choi *et al.* n *ab initio* approach on the asymmetric stacking of GaA 1) nanowires grown by a vapor-solid method

Number 34 14 September 2020 Pages 17559-17950

Acknowledgements

G03-SiGe, Ge & Related Compounds: Materials, Processing and Devices 16:30, 08, Oct, 2020 (HST)

Atomistic Understanding on the Surface of GaAs by Ab Initio Thermodynamics; From Equilibrium Shape to Growth Shape

choijh@kist.re.kr

