Nano Korea 2020 [MF] Materials & Fabrication

Effects of growth condition on the anisotropic growth and stacking behavior of GaAs polar nanowires: *ab initio* thermodynamics

Jul. 2. 2020 (Thu.) 15:30 ~ 15:45

In Won Yeu^{1,2}, Gyuseung Han^{1,2}, Cheol Seong Hwang², and Jung-Hae Choi^{1*}

¹Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 02792, Korea ²Department of Materials Science and Engineering, and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Korea

*E-mail: choijh@kist.re.kr

Unidirectional growth of GaAs NW

- 1) Anisotropic VS-growth
- 2) Theoretical approach to why <111>B?
- 3) Ab initio thermodynamics to surface
- 4) Adsorption on surface reconstruction
- 5) Adsorption vs. Desorption
- 6) Preferential adsorption and nucleation

Asymmetric stacking of GaAs NW

- 1) Asymmetric stacking: ANW vs. BNW
- 2) Energetics of fully formed NW?
- 3) Nucleation-I: with ZB or SF stacking
- 4) (111)A & B reconstruction with SF
- 5) Nucleation-I: ZB vs. SF
- 6) Asymmetric stacking in nucleation-I

1. Unidirectional growth of Nanowire Anisotropic VS-growth of GaAs NW

"Catalyst-free VS growth":

Among the various crystal directions, GaAs NW tends to grow <u>along <111>B</u> at <u>narrow (T,P) range</u>"

1. Unidirectional growth of Nanowire Anisotropic VS-growth of GaAs NW

1. Unidirectional growth of Nanowire Theoretical approach to why <111>B?

1. Unidirectional growth of Nanowire **Ab** <u>initio</u> thermodynamics to surface

1. Unidirectional growth of Nanowire Adsorption on surface reconstruction

1. Unidirectional growth of Nanowire Adsorption vs. Desorption

1. Unidirectional growth of Nanowire (T,P) window of the preferential adsorption

$$\dot{N}_{n|Surf}(T,P) = \dot{C}(Surf,T,P) \cdot \exp\left(-\frac{\Delta G_{Sn}^*(Surf,T,P)}{kT}\right)$$

"Preferential adsorption \rightarrow nucleation \rightarrow BNW growth"

1. Unidirectional growth of Nanowire (T,P) window of the preferential adsorption

2. Asymmetric stacking of Nanowire Asymmetric stacking: ANW vs. BNW

"Polarity dependent stacking"

Between the <u>two opposite directions of</u> <111>, density of <u>planar defects is much</u> <u>higher in <111>B than <111>A</u>

2. Asymmetric stacking of Nanowire Energetics of fully formed NW?

2. Asymmetric stacking of Nanowire Energetics of fully formed NW?

2. Asymmetric stacking of Nanowire Nucleation-I: with ZB or SF stacking

 $\Delta G_{sn} =$

"Incorporation energy" $V\Delta\mu_{sn}$

"Side surface energy" $+A_{side}\gamma_{sn(110)}$

"Top surface energy" $+A_{top}(\gamma_{cn(111)} - \gamma_{sc(111)})$

2. Asymmetric stacking of Nanowire (111)A & B reconstruction with SF

[111]

without SF

with SF

-[111]

with SF

without SF

2. Asymmetric stacking of Nanowire Nucleation-I: ZB vs. SF

2. Asymmetric stacking of Nanowire Asymmetric stacking in nucleation-I

Anisotropic growth

10⁻⁵

10⁻⁶

10⁻⁷

10⁻⁸

10

873

923

973

T (K)

1023

P_{As} (atm)

Asymmetric stacking

α(2×2)

873

Yeu et al., Nanoscale, DOI: 10.1039/D0NR02010A (2020)

923

973

T (K)

1023

1073

1123

(2×2)

All T, P₄.

(2×2)

 $(\sqrt{19} \times \sqrt{19})$

T t, PAS I

Thank you

Yeu et al., Appl. Surf. Sci. 497, 143740 (2019)

1073