제 26회 한국반도체학술대회 세션: [TG2-C] Material Growth & Characterization

Effect of the two-dimensional strain on the equilibrium crystal shape of GaAs by ab-initio thermodynamics

2019. 02. 14.

여인원^{1,2}, 한규승^{1,2}, 황철성², 최정혜^{1*}

¹한국과학기술연구원(KIST) 전자재료연구단 ²서울대학교 재료공학부

yiw0121@snu.ac.kr

Contents

Introduction

- Integration of GaAs on Si CMOS platform
- Purpose

•Homo-epitaxy of GaAs on GaAs(001)

- Unstrained crystal shape simulation of GaAs
- DFT + Statistical thermodynamics

Hetero-epitaxy of GaAs on Si(001)

- Strained crystal shape simulation of GaAs
- DFT + FEM + Statistical thermodynamics

Integration of III-V on Si CMOS platform

	e ⁻ mobility (cm²/Vsec)	h ⁺ mobility (cm²/Vsec)	Lattice constant (Å)
Si	1,400	500	5.43
Ge	3,900	1,900	5.65
GaAs	8,000	400	5.65
InAs	33,000	460	6.06

Difficulties

- Large lattice mismatch → dislocation
- Different thermal expansion coefficients → crack
- Polar material on a nonpolar substrate
 → antiphase domain

Science 335, 1330 (2012)

ACS Nano 10, 2424 (2016)

Cryst. Growth Des., 14, 593 (2014)

ACS Nano 11, 6853 (2017)

Selective Area Growth

- **Dislocation** → Confined to the bottom
 - Crack → inhibition of propagation
 - Antiphase domain → Reduction due to small number of nuclei

Understanding the surface energy & crystal shape

ab-initio thermodynamics

x-axis: $\mu_{As(GaAs)} = \mu_{As(g)}(T, P) \parallel$

4/15

Unstrained shape: Wulff shape

5/15

Computational Materials Design

Wulff shape vs. homo-epitaxial shape

Wulff shape vs. homo-epitaxial shape

(111)B: other reconstructions?

New GaAs(111)B reconstruction

I. W. Yeu, Scientific Reports, 9, 1127 (2019)

Surface vibration of GaAs(111)B

Wulff shape vs. homo-epitaxial shape

Contents

Introduction

- Integration of GaAs on Si CMOS platform
- Purpose

•Homo-epitaxy of GaAs on GaAs(001)

- Unstrained crystal shape simulation of GaAs
- DFT + Statistical thermodynamics

Hetero-epitaxy of GaAs on Si(001)

- Strained crystal shape simulation of GaAs
- DFT + FEM + Statistical thermodynamics

Strained shape: FEM +DFT

Strained shape: FEM +DFT

Computational Materials Design

Strained surface energy

Energy(T, P, V) of strained crystal

Energy(T, P, V) of strained crystal

Unstrained shape vs. Strained shape

