제 25회 한국반도체학술대회 세션: [WA1-C] Material Growth & Characterization

Surface reconstruction and equilibrium shape of Ⅲ−V compound semiconductors as a function of pressure and temperature

2018.02.07

여인원^{1,2}, 한규승^{1,2}, 황철성^{2,3}, 최정혜^{1*}

1한국과학기술연구원(KIST) 전자재료연구단 2서울대학교 재료공학부 3서울대학교 반도체공동연구소

yiw0121@snu.ac.kr

Contents

- Introduction
 - Previous crystal shape simulation
 - Motivation & Methods

- Modeling of GaAs Crystal shape
 - Surface energy
 - Wulff construction
- Conclusion

Equilibrium crystal shape(ECS)

Anisotropic facets

Wulff construction(ECS):

minimization of the total surface free energy for the given thermodynamic conditions

$$\frac{\gamma^{(n)}}{h^{(n)}} = constant,$$

 $\gamma^{(n)}$ =surface energy of specific orientation $h^{(n)}$ =surface normal

Limitations on the previous ECS simulation I

Experiments

Limitation:

Available facet planes and their relative surface energies are adjusted for fitting to the experimental shape \rightarrow "Top-down approach"

Nanotechnology, 26, 405703(2015).

Limitations on the previous ECS simulation II

Relation between chemical potential and (T,P)

 μ is determined by (T,P) but it is hard to experimentally control the μ by (T,P)

 \rightarrow "Gap between thermodynamic variables; μ vs. (T,P)"

Purpose "This study" DFT "Previous study" Wulff shape(µ) Surface energy(μ) "Previous study" Surface energy(T,P) Experiments(T,P) Wulff shape(T,P)

Methodology by scale-bridging

Surface energy(μ_{As}) of GaAs(001)

Computational Materials Design

Scientific Reports, 7, 10691 (2017).

9/16

Surface energy(T,P) of GaAs(001)

Without surf. vib.

"0 K electronic energy difference"

$$\gamma = \frac{\left(E_{surf}^{elec}\right) - N_{In}(E_{Ga}^{elec}) - N_{As}(E_{As}^{elec})}{A}$$

"High T \rightarrow weak bonding \rightarrow lower γ "

Wulff shape(T,P)

$$\gamma^{(113)B}(T,P) = \min\{\gamma^{(113)B}_{i\in(113)B \ reconstructions}\}$$

Wulff construction:

minimization of the total surface free energy for the given thermodynamic conditions

$$\frac{\gamma^{(n)}}{h^{(n)}} = constant,$$

 $\gamma^{(n)}$ =surface energy of specific orientation $h^{(n)}$ =surface normal

Homo-Epitaxy of GaAs on GaAs(001)

Experiments

- 1. MOCVD with trimethyl-Ga and tertiarybutyl-Arsine
- 2. Temperature: 970 K
- 3. Pressure: 0.08 atm with \vee/III ratio of 12.5

Crystal Growth & Design, 10(6), 2509 (2010).

Crystal Growth & Design, 10(6), 2509 (2010).

Comparable ECS of GaAs is determined by (T,P)
This method can be applied to other Ⅲ-V

