제 23회 한국반도체학술대회 세션: [WK2-E] 피-V Device

Oxidation study on the (100), (110) and (111) surfaces of InAs by ab-initio calculations

2016. 02. 24

여인원^{1,2}, 황철성^{2,3}, 최정혜^{1*}

1한국과학기술연구원(KIST) 전자재료연구단 2서울대학교 재료공학부 3서울대학교 반도체공동연구소

yiw0121@snu.ac.kr

Contents

Computational Materials Design

Why oxidation?-Difficulty of avoiding oxidation

Exposure of III-V surfaces to oxygen results in 'Fermi-level pinning'

Initial oxidation of GaAs(001)-(2×4)

→ Oxygen displaces a single As atom (O_{As}) in the top layer. → The displaced As atoms form As_{Ga} antisites, which is believed to cause Fermi-level pinning.

Yi, S. I., Kruse, P., Hale, M., & Kummel, A. C. (2001). The Journal of Chemical Physics, 114(7), 3215-3223.

Computational Materials Design

Why various surfaces?-Impact of surface orientations

Why InAs?-Better intrinsic properties of In_xGa_{1-x}As

The device characteristics improve significantly as increasing In content

Material	Si	Ge	GaAs	InGaAs	InAs
Mobility (electrons) in cm ² V ⁻¹ s ⁻¹	1350	3600	8000	11 200	30 000
Mobility (holes) in cm ² V ⁻¹ s ⁻¹	480	1800	300	300	450

T. P. Ma, Appl. Phys. Lett. 96, 122105 (2010).

Purpose & methods of this investigation

By studying the initial oxidation of InAs on the atomic scale, Explanation of the effect of the surface orientation on the device performance

InAs unit surface

Surface energy: GaAs vs InAs

III-rich condition			V-rich condition		
GaAs [1]	InAs [this study]	Orientation	GaAs [1]	InAs [this study]	
65	48	(100)	45	43	
52 🛰	40	(110)	45 🖌	40	
54 🖌	42	(111)A	51 🗖	42	
69	51	(111)B	43	33	

[1] N. Moll, A. Kley, E. Pehlke, M. Scheffler, Phys. Rev. B 54, 8844 (1996).

(meV/Å²)

InAs: Stable surface structure and the DOS

Potential Energy Surface of O atom on (100)

Adsorption energy & Stability

Site	M ₁	M ₂	M ₃	M ₄	M 5	M ₆	M ₇	M ₈
E _{ads} (eV/O)	-1.96	-1.96	-1.93	-1.81	-1.52	-1.30	-1.29	-1.28

Potential Energy Surface of O atom on (110)

Adsorption energy & Stability

	Site	M ₁	ſ	M ₂	M ₃	M_4		M_5	M ₆
	E _{ads} (eV/O)	-2.38	-2	.38	-2.38	-2.38		-2.19	-1.71
-				0	San 9				e . e .
			>			7	>	-	
(_ 1st layer /	As-O-In		2nd	layer As-O	-In			As=O
Mc	Manana Design seriels ∙ , (M ₁ ~I	M ₄)	I		$(M_5)_{11/17}$				(M ₆)
		•			11/17				

•

Potential Energy Surface of O atom on (111)A

Adsorption energy & Stability

Site	M ₁	M ₂	M ₃	M_4
E _{ads} (eV/O)	-1.85	-1.85	-1.85	-1.80

Potential Energy Surface of O atom on (111)B

13/17

Korea Institute of

The most stable O adsorption site and DOS

The mechanism of O_{As} antisite

Behavior of O₂ molecule on InAs(100)

Summary: comparison with GaAs surfaces

Reaction Coordinate

Orientation	Possibility to generate O _{As} by O ₂	E _a (eV) for O _{as}
(100)	0	0.32 (c.f. 0.44 for GaAs)
(110)	0	Not yet
(111)A	X	-
Montrial Ocomputational Materials Design	17/17	Kora hetilite ef Science and Technology