Atomistic Modeling for the Vapor-Phase Growth of GaAs Nanowires: from DFT to Growth Kinetics

In Won Yeu¹, Gyuseung Han^{1,2}, Cheol Seong Hwang², and Jung-Hae Choi^{1*}

¹Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea ²Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea

Computational Materials Design

Introduction: GaAs nanowire (NW) growth

Among various **Crystallographic directions**, GaAs NWs \checkmark prefers to grow along <111>B at narrow (T,P) range

Results 1: Anisotropic growth of GaAs NW

Why is the growth of GaAs NWs allowed selectively along <111>B at narrow (T,P) range?

1) Surface introduces vibration

stoichiometry

patterns that differ from the bulk

due to its **distinct bonding state** and

interface atoms, based on the fact that

interfacial phonons are **confined to the**

1) InterPhon: A Python Package for

within a 3D Electronic Structure

https://interphon.readthedocs.io/

4) Reference paper: Yeu et al.,

arXiv:2012.04198 (2020)

Ab initio Interface Phonon Calculations

https://github.com/InWonYeu/interphon

2) Within InterPhon code, phonon

vicinity of interfacial regions

Framework

3) Manual:

2) Source code:

evaluation proceeds only in

1) Surface structure depends on vapor environments, which can be described by $\mu_{vapor}(T,P)$

- 2) $\mu_{vapor}(T,P)$ was directly calculated by statistical mechanics taking into account the contributions from translational, rotational, vibrational, and electronic degrees of freedom
 - Interfacial phonon calculations to obtain surface entropy

adsorbed. (atm) SA-MOVPE NW (X) 10⁻⁷ $\mu_{As(Gas)} < E_{As(ad)}^{(111)B}$ It means, Faceted island ط[×] 10⁻⁸ at this T range, SA-MBE NW (O) As sources will (T,P) where As sources Substrate Substrate be **exclusively** preferentially adsorb on (111)B SA-MBE NW (X) $\mu_{As(Gas)} < E_{As(ad)}^{(111)B}$ $\mu_{As(Gas)} > E_{As(ad)}^{(111)B}$ supplied to 873 1023 (111)B. T (K) Yeu et al., Appl. Surf. Sci. 497, 143740 (2019)

Results 2: Asymmetric stacking of GaAs NW

Why is the SF in GaAs NWs formed asymmetrically along two opposite directions of <111>, <111>A & <111>B?

Prediction for T-P dependent surface structure transitions

Yeu et al., Nanoscale 12, 17703 (2020), Outside Front Cover

Contact: <u>yeuiw@kist.re.kr</u>

Summary

1) Considering the surface transitions, the change in Gibbs free energy was calculated as a function of **T** and **P** at each growth stage on surfaces: adsorption and nucleation.

2) The mechanism of extreme anisotropic growth of GaAs (spontaneous NW formation): preferential adsorption of vapor sources on (111)B surface, allowed at narrow T-P range.

3) The mechanism of asymmetric formation of stacking sequence: different nucleation behavior on the different polar surfaces, (111)A and (111)B.

DPG-Frühjahrstagung (DPG Spring Meeting) of the Surface Science Division, Mar 1st ~ 4th, 2021