Prediction of the Surface Energy from the Robust Extraction of Local Energy via Atomic Neural Network In Won Yeu^{1,2}, Gyuseung Han^{1,2}, Cheol Seong Hwang², and Jung-Hae Choi^{1*}

¹Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 02792, Korea ²Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea

Computational Materials Design

Introduction & Motivation

Results & Summary

• Model: Interaction layer + conventional FC layer

I. W. Yeu et al., Scientific Reports, 7, 10691 (2017)

- The DFT calculation of surface energy along with ab-initio thermodynamics enables us to predict stable surface structures and population as a function of temperature and pressure.
- Equilibrium crystal shape (T,P) of GaAs with new recontruction **SEM of GaAs grown by SA-MOVPE** Wulff shape

I. W. Yeu et al., Scientific Reports, 9, 1127 (2019)

- In particular, the absolute surface energy is crucial to compare the relative stability of each facet.
- Facet-driven unidirectional <111>B growth under specific (T,P) by preferential As adsorption on (111)B reconstruction

Problem: the availability of the absolute surface energy is restricted to symmetric slabs with two identical surfaces, calculated by $\gamma = (E_{slab} - n_{slab}E_{bulk})/(2A_{slab})$.

• Purpose & Methods

Locality: atomic energy mapping by Atomic NN

Atomic NNs Coordinates Functions

Total Atomic Energies Energy

Red circle: correct local energy in which surface energy is calculated with error lower than 5 meV/Å² \rightarrow deviation from this region indicates error in local energy.

Black solid line: exact total energy of slab \rightarrow deviation from this line indicates error in total energy.

- In general, the obtained atomic energy is meaningless and not **<u>converged</u>** because the Atomic NN training is **<u>the process to</u>** minimize the error in total energy not in atomic energy.
 - Using GaAs (111)AB polar surface as an example of asymmetric slab, we demonstrate that the robust extraction of the meaningful local energy and following surface energy is possible by $\gamma = (E_{top; slab} - n_{top; slab}E_{bulk})/(A_{slab})$.
- Importantly, it shows possibility of **convergence with respect to** the number of datasets, descriptors, and hyper-parameters.

Summary

- The inherent randomness of atomic NN, caused by large latent space and random initialization, is a **severe obstacle to extract** correct and converged local energy.
- The flexible model with physically acceptable meaning automatically adjusts the defined descriptors and shows convergence of the local energy.

ICMS 2019, Lotte Hotel Jeju, Korea, 11.3~6, 2019

Contact: yiw0121@snu.ac.kr