Atomistic understanding of the asymmetric growth and stacking behavior of GaAs nanowire grown by noncatalytic facet-driven method In Won Yeu^{1,2}, Gyuseung Han^{1,2}, Cheol Seong Hwang², and Jung-Hae Choi^{1*}

¹Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 02792, Korea ²Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea

Computational Materials Design

Introduction: GaAs nanowire (NW)

- Asymmetric growth
- "Among the various crystal directions, GaAs NW tends to grow along <111>B at narrow (T,P) range"

Asymmetric stacking

"Between the two opposite directions of <111>, density of planar defects is much higher in GaAs NW grown along <111>B (BNW) than <111>A (ANW)" 10 mm

• Calculation methods Surface energy (T,P) Ab-initio thermodynamics Which material forms at given (T,P) conditions? P increases, T decreases

#TP1 069

Which reconstruction forms at given (T,P) conditions?

Adv. Mater. 27, 6096 (2015)

J. Cryst. Growth. 287, 5004 (2006)

Purpose: Atomic simulation of NW growth

- Despite the tremendous developments in vapor-phase growth techniques, mechanism has not been understood and theoretical attempts remains at the heuristic level.
- In this presentation, atomistic approach is suggested for thorough understanding of the T-P dependent asymmetric growth and stacking behavior considering enormous change in entropy between vapor-surface-solid.

Results 2: Asymmetric stacking of GaAs NW **SA-MOCVD Experiments: GaAs BNW** 10⁻⁴ Contour of Probability (T,P) **Prediction of stacking kinetics by asymmetric nucleation (T,P)** 760 °C Nucleation <u>NW growth proceeds through layer-by-layer initiated by a nucleus:</u> "Stacking sequence on each layer is determined during nucleation" 10⁻⁵ Vapor Source: 10⁻⁶ {110} side facet (atm) Ga+As₂+As₄ ACS Nano 10, 2424 (2016) "ANW" "BNW" 10⁻⁷ T_=730°C , Ø=140 nm As a Ab Bc Ca \rightarrow <111>A <111>B \leftarrow Ab Bc Ca A \cdots Δ. 10⁻⁸ SF decreases as T↑ and P which can also be 50 nm 10^{-9} observed in experiments TG=790°C, Ø=140 nm $\frac{P_{n(SF)} = \dot{N}_{(SF)} / (\dot{N}_{(SF)} + \dot{N}_{(ZB)})}{\dot{N}_{(i)}: nucleation rate with i - stacking}$ **Nucleation I:** SF density = 7% nucleus on ZB crystal surface: 873 1123 1073

The 27th Korean Conference on Semiconductors, 강원도 하이원리조트, 2.12~14, 2020

Contact: yiw0121@snu.ac.kr