Equilibrium crystal shape of GaAs and InAs by ab-initio thermodynamics

In Won Yeu^{1,2}, Gyuseung Han^{1,2}, Cheol Seong Hwang^{2,3}, and Jung-Hae Choi^{1*}

¹Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 02792, Korea

²Department of Materials Science and Engineering, and inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Korea

Computational Materials Design

Introduction

Equilibrium Crystal Shape(ECS) calculation

Wulff construction(ECS):

minimization of the total surface free energy for the given thermodynamic conditions

"Previous study"

Wulff shape(μ)

 $\frac{\gamma^{(n)}}{h^{(n)}} = constant,$

 $\gamma^{(n)}$ =surface energy of specific orientation $h^{(n)}$ =surface normal

Limitations on the previous ECS calculation

• Results

Calculation of ECS of GaAs and InAs as a function of (T,P)

Surface energy(μ)

Comparison with the experimental growth shapes

Calculation Methods

- **DFT conditions**
- Vienna ab initio Simulation Package(VASP)
- xc-functional: LDA
- Valence electrons: Ga[$3d^{10}4s^24p^1$], In[$4d^{10}5s^25p^1$], As[$4s^24p^3$]
- Cutoff energy: 500eV
- K-points: 12*12*12 for conventional zinc-blende cell
- Energy(force) convergence: 10⁻⁶ eV(0.02 eV/Å)
- Surface slab structure with vacuum thickness >10 Å

Comparison with the experimental grown shapes

Summary

- Calculation of ECS(T,P) of GaAs and InAs including the effects of anisotropic surface vibration.
- Comparison with the experimental growth shapes confirms that the experimental growth was in near equilibrium.

제 14회 고등과학원 전자구조계산학회, KIAS, 6.21~22, 2018

Contact: yiw0121@snu.ac.kr